【題目】已知拋物線C1:x2=4y 的焦點(diǎn)F也是橢圓c2:的一個(gè)焦點(diǎn), C1和C2的公共弦長為
(1)求 C2的方程;
(2)過點(diǎn)F 的直線 l與 C1相交于A與B兩點(diǎn), 與C2相交于C , D兩點(diǎn),且 同向
(。┤ 求直線l的斜率;
(ⅱ)設(shè) C1在點(diǎn) A處的切線與 x軸的交點(diǎn)為M ,證明:直線l 繞點(diǎn) F旋轉(zhuǎn)時(shí), MFD總是鈍角三角形。

【答案】(1)
(2)(i),
(ii)見解析。
【解析】(1)根據(jù)已知條件可求得C2的焦點(diǎn)坐標(biāo)為(0,1),再利用公共弦長為即可求解由C1知其焦點(diǎn)F的坐標(biāo)(0,1)因?yàn)镕也是橢圓C2的一焦點(diǎn),所以①又C1與C2的公共弦長為 , C1與C2都關(guān)于y軸對(duì)稱,且C1的方程為由此易得C1與C2公共點(diǎn)的坐標(biāo)為所以,②聯(lián)立①,②得a2=9,b2=8故C2的方程為
(2)(。┰O(shè)直線l的斜率為k,則l的方程為y=kx+1,由得x2+16kx+64=0,根據(jù)條件可知 , 從而可以建立關(guān)于k的方程,即可求解,如圖f因?yàn)?/span>同向且所以 , 從而,于是③,設(shè)直線l的斜率為k,則l的方程為y=kx+1,由而x1x2是這個(gè)方程的兩個(gè)根所以得(9+8k)2+16kx-64=0而x3x4是這個(gè)方程的兩個(gè)根,所以⑤將④⑤帶入③得
, 即 , 所以 , 解得,k=

(ⅱ)根據(jù)條件可說明 , 因此是銳角,從而是鈍角,即可得證由令y=0得所以,于是因此是銳角。
【考點(diǎn)精析】根據(jù)題目的已知條件,利用橢圓的標(biāo)準(zhǔn)方程和橢圓的參數(shù)方程的相關(guān)知識(shí)可以得到問題的答案,需要掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:;橢圓的參數(shù)方程可表示為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)對(duì)定義域內(nèi)的每一個(gè)值在其定義域內(nèi)都存在唯一的使成立,則稱該函數(shù)為“依賴函數(shù)”.

(1)判斷函數(shù)是否為“依賴函數(shù)”,并說明理由;

(2)若函數(shù)在定義域上為“依賴函數(shù)”,求實(shí)數(shù)乘積的取值范圍;

(3)已知函數(shù)在定義域上為“依賴函數(shù)”,若存在實(shí)數(shù)使得對(duì)任意的有不等式都成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),Xn是曲線y=X2n+2+1在點(diǎn)(1,2)處的切線與x軸焦點(diǎn)的橫坐標(biāo)
(1)求數(shù)列{xn}的通項(xiàng)公式;
(2)記Tn=....,證明Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】
設(shè)函數(shù)
①若,則的最小值為
②若恰有2個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次馬拉松比賽中,35名運(yùn)動(dòng)員的成績(單位:分鐘)的莖葉圖如圖所示,若將運(yùn)動(dòng)員按成績由好到差編為號(hào),再用系統(tǒng)抽樣方法從中抽取7人,則其中成績?cè)趨^(qū)間上的運(yùn)動(dòng)員人數(shù)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人組成“星隊(duì)”參加猜成語活動(dòng),每輪活動(dòng)由甲、乙各猜一個(gè)成語,在一輪活動(dòng)中,如果兩人都猜對(duì),則“星隊(duì)”得3分;如果只有一個(gè)人猜對(duì),則“星隊(duì)”得1分;如果兩人都沒猜對(duì),則“星隊(duì)”得0分.已知甲每輪猜對(duì)的概率是 ,乙每輪猜對(duì)的概率是 ;每輪活動(dòng)中甲、乙猜對(duì)與否互不影響.各輪結(jié)果亦互不影響.假設(shè)“星隊(duì)”參加兩輪活動(dòng),求:
(1)“星隊(duì)”至少猜對(duì)3個(gè)成語的概率;
(2)“星隊(duì)”兩輪得分之和為X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x+ |+|x﹣a|(a>0).
(1)證明:f(x)≥2;
(2)若f(3)<5,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn , 數(shù)列{bn}是等比數(shù)列,且滿足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3 , 數(shù)列{ }的前n項(xiàng)和Tn , 若Tn<M對(duì)一切正整數(shù)n都成立,則M的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=sinωx(ω>0)的圖象向左平移 個(gè)單位得到函數(shù)g(x)的圖象,若函數(shù)g(x)的圖象關(guān)于直線x=ω對(duì)稱且在區(qū)間(﹣ω,ω)內(nèi)單調(diào)遞增,則ω的值為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案