【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓 =1(a>b>0)的離心率為 ,長軸長為4,過橢圓的左頂點A作直線l,分別交橢圓和圓x2+y2=a2于相異兩點P,Q.
(1)若直線l的斜率為 ,求 的值;
(2)若 =λ ,求實數(shù)λ的取值范圍.
【答案】
(1)解:由條件可得,2a=4,e= = ,a2﹣b2=c2,
解得a=2,b=c= ,
可得橢圓的方程為 ,圓的方程為x2+y2=4;
(方法一)直線l的方程為 ,由 得:3x2+4x﹣4=0,
解得 ,所以 ;
所以 ,又因為原點O到直線l的距離 ,
所以 ,
所以 ;
(方法二)由 得3y2﹣4y=0,所以yP= ,
由 可得5y2﹣8y=0,解得yQ= ,
所以 = = × =
(2)解:(方法一)若 ,則λ= ﹣1,
設(shè)直線l:y=k(x+2),由 得,(2k2+1)x2+8k2﹣4=0,
即(x+2)[(2k2+1)x+(4k2﹣2)]=0,
所以 ,得 ;
所以 ,
即 ,同理Q( , ), ,
即有λ= ﹣1=1﹣ ,
由k2>0,可得0<k2<1.
(方法二)由方法一可得,λ= ﹣1= ﹣1= ﹣1=1﹣ ,
由題意:k2>0,所以0<λ<1
【解析】(1)由題意可得a=2,運(yùn)用離心率公式和a,b,c的關(guān)系可得b,c,進(jìn)而得到橢圓方程和圓的方程,設(shè)出直線l的方程代入橢圓方程,求得弦長AP,運(yùn)用圓的弦長公式可AQ,進(jìn)而所求之比;或聯(lián)立直線的方程和橢圓方程(或圓的方程)求得P,Q的縱坐標(biāo),即可得到所求之比;(2)若 ,則 ,設(shè)直線l:y=k(x+2),代入橢圓方程,求得交點,以及弦長AP,代入圓方程可得交點,可得弦長AQ,可得實數(shù)λ的式子,運(yùn)用不等式的性質(zhì)即可得到所求范圍;或?qū)⒅本方程代入橢圓方程(圓方程)求得P,Q的縱坐標(biāo),由坐標(biāo)之比,結(jié)合不等式的性質(zhì),即可得到所求范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,D是到原點的距離不大于1的點構(gòu)成的區(qū)域,E是滿足不等式組 的點(x,y)構(gòu)成的區(qū)域,向D中隨機(jī)投一點,則所投的點落在E中的概率是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知恒等式(1+x+x2)n=a0+a1x+a2x2+…+a2nx2n .
(1)求a1+a2+a3+…+a2n和a2+2a3+22a4+…+22n﹣2a2n的值;
(2)當(dāng)n≥6時,求證: a2+2A a3+…+22n﹣2 a2n<49n﹣2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=xex﹣asinxcosx(a∈R,其中e是自然對數(shù)的底數(shù)).
(1)當(dāng)a=0時,求f(x)的極值;
(2)若對于任意的x∈[0, ],f(x)≥0恒成立,求a的取值范圍;
(3)是否存在實數(shù)a,使得函數(shù)f(x)在區(qū)間 上有兩個零點?若存在,求出a的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解甲、乙兩廠的產(chǎn)品質(zhì)量,分別從兩廠生產(chǎn)的產(chǎn)品中各隨機(jī)抽取10件,測量產(chǎn)品中某種元素的含量(單位:毫克),其測量數(shù)據(jù)的莖葉圖如圖所示.
規(guī)定:當(dāng)產(chǎn)品中此種元素的含量大于18毫克時,認(rèn)定該產(chǎn)品為優(yōu)等品.
(1)試比較甲、乙兩廠生產(chǎn)的產(chǎn)品中該種元素含量的平均值的大小;
(2)從乙廠抽出的上述10件產(chǎn)品中隨機(jī)抽取3件,求抽到的3件產(chǎn)品中優(yōu)等品數(shù)X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是公差為正數(shù)的等差數(shù)列,其前項和為,
且,
(1)求數(shù)列的通項公式.
(2)設(shè)數(shù)列滿足,
①求數(shù)列的通項公式;
②是否存在正整數(shù),使得,,成等差數(shù)列?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (α為參數(shù))以原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為 .若直線l與曲線C交于A,B,求線段AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在圓上任取一點,過點作軸的垂線段,為垂足.,當(dāng)點在圓上運(yùn)動時,
(1)求點的軌跡的方程;
(2) 若,直線交曲線于、兩點(點、與點不重合),且滿足.為坐標(biāo)原點,點滿足,證明直線過定點,并求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈[-1,2],函數(shù)f(x)=x2-x的值大于0,若p∨q是真命題,則命題q可以是( )
A. x0∈(-1,1),cos x0<
B. “-3<m<0”是“函數(shù)f(x)=x+log2x+m在區(qū)間上有零點”的必要不充分條件
C. x=是曲線f(x)=sin 2x+cos 2x的一條對稱軸
D. 若x∈(0,2),則在曲線f(x)=ex(x-2)上任意一點處的切線的斜率不小于
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com