已知是雙曲線的左、右焦點(diǎn),為雙曲線左支上一點(diǎn),若的最小值為,則該雙曲線的離心率的取值范圍是
A.B.C.D.
C

分析:由定義知:|PF2|-|PF1|=2a,|PF2|=2a+|PF1|,= = +4a+|PF1| ≥8a,當(dāng)且僅當(dāng)=|PF1|,即|PF1|=2a時(shí)取得等號(hào).再由焦半徑公式得雙曲線的離心率的取值范圍.
解:由定義知:|PF2|-|PF1|=2a,
|PF2|=2a+|PF1|,
=
=+4a+|PF1| ≥8a,
當(dāng)且僅當(dāng)=|PF1|,
即|PF1|=2a時(shí)取得等號(hào)
設(shè)P(x0,y0) (x0≤-a)
由焦半徑公式得:
|PF1|=-ex0-a=2a
ex0=-2a
e=-≤3
又雙曲線的離心率e>1
∴e∈(1,3].
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(6’+9’)已知雙曲線,上的任意點(diǎn)。
(1)求證:點(diǎn)到雙曲線的兩條漸近線的距離的乘積是一個(gè)常數(shù);
(2)設(shè)點(diǎn)的坐標(biāo)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知雙曲線的離心率是。則         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線的左、右頂點(diǎn)分別為A、B,雙曲線在第一象限的圖象上有一點(diǎn)P,,則                      (  )
A.     B.
C.    D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)是雙曲線漸近線上的一點(diǎn),是左、右兩個(gè)焦點(diǎn),若,則雙曲線方程為                        
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若F1、F2分別為雙曲線 -=1下、上焦點(diǎn),O為坐標(biāo)原點(diǎn),P在雙曲線的下支上,點(diǎn)M在上準(zhǔn)線上,且滿足:,
(1)求此雙曲線的離心率;
(2)若此雙曲線過(guò)N(,2),求此雙曲線的方程
(3)若過(guò)N(,2)的雙曲線的虛軸端點(diǎn)分別B1,B2(B2x軸正半軸上),點(diǎn)A、B在雙曲線上,且,求時(shí),直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線的中心在原點(diǎn),右頂點(diǎn)為A(1,0),點(diǎn)P、Q在雙曲線的右支上,點(diǎn)M(m,0)到直線AP的距離為1.
(1)若直線AP的斜率為k,且|k|∈[,],求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=+1時(shí),△APQ的內(nèi)心恰好是點(diǎn)M,求此雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知分別是雙曲線的左右焦點(diǎn),且其中一條漸近線方程是,點(diǎn)在該雙曲線上,             

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

以雙曲線的頂點(diǎn)為焦點(diǎn),焦點(diǎn)為頂點(diǎn)的橢圓方程是        .

查看答案和解析>>

同步練習(xí)冊(cè)答案