14.若x<0,則$x+\frac{1}{x}$的取值范圍是(-∞,-2].

分析 根據(jù)基本不等式即可求出范圍.

解答 解:若x<0,
∴-x>0,
∴$x+\frac{1}{x}$=-[(-x)+$\frac{1}{-x}$]≤-2$\sqrt{(-x)•\frac{1}{-x}}$=-2,
故則$x+\frac{1}{x}$的取值范圍是(-∞,-2],
故答案為:(-∞,-2],

點評 本題主要考查了基本不等式的應(yīng)用.“一正,二定,三相等”的條件必須同時滿足.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知關(guān)于x的不等式|x-2|-|x-3|≤m對x∈R恒成立.
(1)求實數(shù)m的最小值;
(2)若a,b,c為正實數(shù),k為實數(shù)m的最小值,且$\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$=k,求證:a+2b+3c≥9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)Sn是等差數(shù)列{an}的前n項和,若a1+a3+a5=6,則S5=( 。
A.5B.7C.10D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知y=f(x)+3x2是奇函數(shù),f(2)=3,設(shè)g(x)=f(x)-3x,則g(-2)=( 。
A.-27B.27C.-21D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知△ABC內(nèi)接于以原點O為圓心半徑為1的圓,若2$\stackrel{?}{OA}$+3$\stackrel{?}{OB}$+$\sqrt{7}\stackrel{?}{OC}$=0,則∠ACB=( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.${(2\frac{7}{9})^{\frac{1}{2}}}$-(-8.4)0-lg0.00032+(1.5)-2-5lg5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)=e,則f(x2)=( 。
A.e2B.eC.$\sqrt{e}$D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓的長半軸為6,焦點在x軸上,離心率$e=\frac{{\sqrt{3}}}{2}$;
(1)求橢圓的標準方程;
(2)求以橢圓內(nèi)一點M(4,2)為中點的弦所在的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.實數(shù)x大于$\sqrt{10}$,用不等式表示為(  )
A.$x<\sqrt{10}$B.$x≤\sqrt{10}$C.$x>\sqrt{10}$D.$x≥\sqrt{10}$

查看答案和解析>>

同步練習(xí)冊答案