(2007•武漢模擬)△ABC的AB邊在平面α內(nèi),C在平面α外,AC和BC分別與面α成30°和45°的角,且面ABC與α成60°的二面角,那么sin∠ACB的值為(  )
分析:從C向平面作垂線CD,連接AD,BD,作CE⊥AB,連接DE,根據(jù)三垂線定理,DE⊥AB,設(shè)CD=h,∠CBD=45°,BC=
2
h,∠CAD=30°,AC=2CD=2h,∠CED是二面角的平面角,∠CED=60°,CE=
2
3
h
3
,由勾股定理求出sinC=1;另一種是∠B是鈍角,CE在三角形ABC之外,AB=AE-BE=
6
h
3
,由余弦定理,求出sinC.
解答:解:從C向平面作垂線CD,連接AD,BD,作CE⊥AB,連接DE,根據(jù)三垂線定理,DE⊥AB,設(shè)CD=h,∠CBD=45°,BC=
2
h,∠CAD=30°,
AC=2CD=2h,∠CED是二面角的平面角,∠CED=60°,CE=
2
3
h
3
,根據(jù)勾股定理,AE=
2
6
3
h
,BE=
6
3
h
,AB=AE+BE=
6
h,
根據(jù)勾股定理逆定理,AB2=BC2+AC2
6
h)2=(
2
h)2+(2h)2,
∠C=90°,sinC=1,
另一種是∠B是鈍角,CE在三角形ABC之外,AB=AE-BE=
6
h
3
,
根據(jù)余弦定理,AB2=AC2+BC2-2AC×BC×cosC,
6
3
h)2=(2h)2+(
2
h)2-2×2h×
2
hcosC,
cosC=
2
2
3
,
sinC=
1-cos2C
=
1
3
,
故角ACB的正弦值是1或
1
3

故選D.
點(diǎn)評(píng):本題考查與二面角有關(guān)的立體幾何的綜合問(wèn)題,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意勾股定理和余弦定理的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•武漢模擬)已知函數(shù)f(x)=2
x
+
4-x
,則函數(shù)f(x)的值域?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•武漢模擬)如圖,在平面四邊形ABCD中,AB=AD=1,∠BAD=θ,而△BCD是正三角形,
(1)將四邊形ABCD面積S表示為θ的函數(shù);
(2)求S的最大值及此時(shí)θ角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•武漢模擬)復(fù)數(shù)z=(1-i)2i等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•武漢模擬)直線AB過(guò)拋物線y2=x的焦點(diǎn)F,與拋物線交于A、B兩點(diǎn),且|AB|=3,則線段AB的中點(diǎn)到y(tǒng)軸的距離為
5
4
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•武漢模擬)如圖,直線l:y=
4
3
(x-2)和雙曲線C:
x2
a2
-
y2
b2
=1 (a>0,b>0)交于A、B兩點(diǎn),|AB|=
12
11
,又l關(guān)于直線l1:y=
b
a
x對(duì)稱(chēng)的直線l2與x軸平行.
(1)求雙曲線C的離心率;(2)求雙曲線C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案