若點(diǎn)(a,-1)在函數(shù)的圖象上,則的值為   
【答案】分析:將x=a,y=-1代入函數(shù)解析式中求出a的值,將a的值代入所求式子中計(jì)算即可求出值.
解答:解:將x=a,y=-1代入函數(shù)解析式得:-1=
解得:a=3,
則tan=tan=tan(π+)=tan=
故答案為:
點(diǎn)評(píng):此題考查了三角函數(shù)的化簡(jiǎn)求值,涉及的知識(shí)有:對(duì)數(shù)的運(yùn)算性質(zhì),誘導(dǎo)公式,以及特殊角的三角函數(shù)值,熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函f(x)=x2-8lnx,g(x)=-x2+14x
(1)求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)f(x)與g(x)在區(qū)間(a,a+1)上均為增函數(shù),求a的取值范圍;
(3)若方程f(x)=g(x)+m有唯一解,試求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法中:
①函數(shù)f(x)=
x-1
x+1
與g(x)=x的圖象沒(méi)有公共點(diǎn);
②若定義在R上的函數(shù)f(x)滿(mǎn)足f(x+3)=-f(x),則6為函數(shù)f(x)的周期;
③若對(duì)于任意x∈(1,3),不等式x2-ax+2<0恒成立,則a>
11
3
;
④定義:“若函數(shù)f(x)對(duì)于任意x∈R,都存在正常數(shù)M,使|f(x)|≤M|x|恒成立,則稱(chēng)函數(shù)f(x)為有界泛函.”由該定義可知,函數(shù)f(x)=x2+1為有界泛函.
則其中正確的是
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法中:
①函數(shù)f(x)=
x-1
x+1
與g(x)=x的圖象沒(méi)有公共點(diǎn);
②若定義在R上的函數(shù)f(x)滿(mǎn)足f(x+2)=-f(x-1),則6為函數(shù)f(x)的周期;
③若對(duì)于任意x∈(1,3),不等式x2-ax+2<0恒成立,則a>
11
3
;
④定義:“若函數(shù)f(x)對(duì)于任意x∈R,都存在正常數(shù)M,使|f(x)|≤M|x|恒成立,則稱(chēng)函數(shù)f(x)為有界泛函.”由該定義可知,函數(shù)f(x)=x2+1為有界泛函.
則其中正確的個(gè)數(shù)為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:黑龍江省哈爾濱三中2010屆高三9月月考數(shù)學(xué)文科試題 題型:013

下列說(shuō)法中:

①函數(shù)f(x)=與g(x)=x的圖象沒(méi)有公共點(diǎn);

②若定義在R上的函數(shù)f(x)滿(mǎn)足f(x+2)=-f(x-1),則6為函數(shù)f(x)的周期;

③若對(duì)于任意x∈(1,3),不等式x2-ax+2<0恒成立,則;

④定義:“若函數(shù)f(x)對(duì)于任意x∈R,都存在正常數(shù)M,使|f(x)|≤M|x|恒成立,則稱(chēng)函數(shù)f(x)為有界泛函.”由該定義可知,函數(shù)f(x)=x2+1為有界泛函.

正確的個(gè)數(shù)為

[  ]

A.1個(gè)

B.2個(gè)

C.3個(gè)

D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題分A,B類(lèi),滿(mǎn)分12分,任選一類(lèi),若兩類(lèi)都選,以A類(lèi)記分)

(A類(lèi))已知函數(shù)的圖象恒過(guò)定點(diǎn),且點(diǎn)又在函

數(shù)的圖象.

(1)求實(shí)數(shù)的值;                (2)解不等式;

(3)有兩個(gè)不等實(shí)根時(shí),求的取值范圍.

(B類(lèi))設(shè)是定義在上的函數(shù),對(duì)任意,恒有

.

⑴求的值;     ⑵求證:為奇函數(shù);

⑶若函數(shù)上的增函數(shù),已知,求

取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案