函數(shù)y=f(x)的圖象與直線x=a的交點(diǎn)


  1. A.
    至少有一個(gè)
  2. B.
    至多有一個(gè)
  3. C.
    恰有一個(gè)
  4. D.
    可以有任意多個(gè)
B
分析:求圖象的交點(diǎn),即求聯(lián)立函數(shù)方程的解的個(gè)數(shù),根據(jù)函數(shù)的定義來判斷解的個(gè)數(shù).
解答:聯(lián)立
當(dāng)x=a有定義時(shí),把x=a代入函數(shù)y=f(x),
根據(jù)函數(shù)的定義:定義域內(nèi)每一個(gè)x對(duì)應(yīng)惟一的y,當(dāng)x=a在定義域范圍內(nèi)時(shí),有唯一解,
當(dāng)x=a無定義時(shí),沒有解.
所以至多有一個(gè)交點(diǎn).
故選B.
點(diǎn)評(píng):本題考查對(duì)函數(shù)的定義的理解,得出結(jié)論:函數(shù)y=f(x)的圖象與直線x=a至多有一個(gè)交點(diǎn).屬于基礎(chǔ)題.本題易因?yàn)閷?duì)函數(shù)概念理解不深導(dǎo)致錯(cuò)誤
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)y=f(x)的圖象過點(diǎn)(2,
2
2
),試求出此函數(shù)的解析式,并作出圖象,判斷奇偶性、單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+alnxx
,(a∈R).
(1)若函數(shù)f(x)在x=1處取得極值,求實(shí)數(shù)a的值;
(2)在(1)條件下,若直線y=kx與函數(shù)y=f(x)的圖象相切,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=lnx-2的圖象按向量
α
=(-1,2)平移得到函數(shù)y=f(x)的圖象.
(1)若x>0,證明;f(x)>
2x
x+2

(2不等式
1
2
x2≤f(x2)+m2-2bm-3對(duì)b∈[-1,1],x∈[-1,1]時(shí)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)設(shè)函數(shù)y=f(x)=x(x-a)(x-b)(a、b∈R).
(Ⅰ)若a≠b,ab≠0,過兩點(diǎn)(0,0)、(a,0)的中點(diǎn)作與x軸垂直的直線,此直線與函數(shù)y=f(x)的圖象交于點(diǎn)P(x0,f(x0)),求證:函數(shù)y=f(x)在點(diǎn)P處的切 線過點(diǎn)(
4
3
3
,0);
(Ⅱ)若a=b(a≠0),且當(dāng)x∈[0,|a|+1]時(shí)f(x)<2a2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如下表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,給出關(guān)于f(x)的下列命題:
x -1 0 2 4 5
f(x) 1 2 0 2 1
①函數(shù)y=f(x)在x=2取到極小值;
②函數(shù)f(x)在[0,1]是減函數(shù),在[1,2]是增函數(shù);
③當(dāng)1<a<2時(shí),函數(shù)y=f(x)-a有4個(gè)零點(diǎn);
④如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最小值為0.
其中所有正確命題是
①③④
①③④
(寫出正確命題的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案