分析 根據(jù)題意,將四面體ABCD放置于如圖所示的正方體中,則正方體的外接球就是四面體ABCD的外接球.因此利用題中數(shù)據(jù)算出外接球半徑R=$\sqrt{6}$,過(guò)E點(diǎn)的截面到球心的最大距離為$\sqrt{2}$,再利用球的截面圓性質(zhì)可算出截面面積的最小值、最大值,可得結(jié)論.
解答 解:將四面體ABCD放置于正方體中,如圖所示
可得正方體的外接球就是四面體ABCD的外接球,
設(shè)正四面體ABCD的棱長(zhǎng)為4,則正方體的棱長(zhǎng)為2$\sqrt{2}$,
可得外接球半徑R滿足2R=2$\sqrt{2}$$•\sqrt{3}$,解得R=$\sqrt{6}$
E為棱BC的中點(diǎn),過(guò)E作其外接球的截面,當(dāng)截面到球心O的距離最大時(shí),
截面圓的面積達(dá)最小值,
此時(shí)球心O到截面的距離等于正方體棱長(zhǎng)的一半,
可得截面圓的半徑為r=2,得到截面圓的面積最小值為T(mén)=πr2=4π.
∵S=πR2=6π,∴$\frac{S}{T}$=$\frac{3}{2}$,
故答案為:$\frac{3}{2}$.
點(diǎn)評(píng) 本題給出正四面體的外接球,求截面圓的面積最小值、最大值.著重考查了正方體的性質(zhì)、球內(nèi)接多面體和球的截面圓性質(zhì)等知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com