已知函數(shù),,其中,且.
⑴當(dāng)時(shí),求函數(shù)的最大值;
⑵求函數(shù)的單調(diào)區(qū)間;
⑶設(shè)函數(shù)若對(duì)任意給定的非零實(shí)數(shù),存在非零實(shí)數(shù)),使得成立,求實(shí)數(shù)的取值范圍.
⑴-1; ⑵詳見(jiàn)解析; ⑶

試題分析:⑴令g′(x)=0求出根,判斷g′(x)在左右兩邊的符號(hào),得到g(x)在上單調(diào)遞增,在上單調(diào)遞減,可知g(x)最大值為g(1),并求出最值;
⑵解不等式得出函數(shù)的單調(diào)增區(qū)間,導(dǎo)數(shù)小于零求出單調(diào)遞減區(qū)間,注意單調(diào)區(qū)間與定義域取交集;
⑶不等式恒成立就是求函數(shù)的最值,注意對(duì)參數(shù)的討論.
試題解析:⑴當(dāng)時(shí), ∴
,則, ∴上單調(diào)遞增,在上單調(diào)遞減
                          (4分)
,,(
∴當(dāng)時(shí),,∴函數(shù)的增區(qū)間為,
當(dāng)時(shí),,
當(dāng)時(shí),,函數(shù)是減函數(shù);當(dāng)時(shí),,函數(shù)是增函數(shù).
綜上得,當(dāng)時(shí),的增區(qū)間為; 
當(dāng)時(shí),的增區(qū)間為,減區(qū)間為   (10分)
⑶當(dāng),上是減函數(shù),此時(shí)的取值集合;
當(dāng)時(shí),,
時(shí),上是增函數(shù),此時(shí)的取值集合;
時(shí),上是減函數(shù),此時(shí)的取值集合.
對(duì)任意給定的非零實(shí)數(shù),
①當(dāng)時(shí),∵上是減函數(shù),則在上不存在實(shí)數(shù)),使得,則,要在上存在非零實(shí)數(shù)),使得成立,必定有,∴
②當(dāng)時(shí),時(shí)是單調(diào)函數(shù),則,要在上存在非零實(shí)數(shù)),使得成立,必定有,∴.
綜上得,實(shí)數(shù)的取值范圍為.                          (14分).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),為常數(shù)),直線(xiàn)與函數(shù)、的圖象都相切,且與函數(shù)圖象的切點(diǎn)的橫坐標(biāo)為
(1)求直線(xiàn)的方程及的值;
(2)若 [注:的導(dǎo)函數(shù)],求函數(shù)的單調(diào)遞增區(qū)間;
(3)當(dāng)時(shí),試討論方程的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù), 在處取得極小值2.
(1)求函數(shù)的解析式;
(2)求函數(shù)的極值;
(3)設(shè)函數(shù), 若對(duì)于任意,總存在, 使得, 求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)設(shè),求的最小值;
(Ⅱ)如何上下平移的圖象,使得的圖象有公共點(diǎn)且在公共點(diǎn)處切線(xiàn)相同.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知a,b為常數(shù),a¹0,函數(shù)
(1)若a=2,b=1,求在(0,+∞)內(nèi)的極值;
(2)①若a>0,b>0,求證:在區(qū)間[1,2]上是增函數(shù);
②若,,且在區(qū)間[1,2]上是增函數(shù),求由所有點(diǎn)形成的平面區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)若,求在點(diǎn)處的切線(xiàn)方程;
(Ⅱ)求函數(shù)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)為常數(shù)),其圖象是曲線(xiàn)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)減區(qū)間;
(2)設(shè)函數(shù)的導(dǎo)函數(shù)為,若存在唯一的實(shí)數(shù),使得同時(shí)成立,求實(shí)數(shù)的取值范圍;
(3)已知點(diǎn)為曲線(xiàn)上的動(dòng)點(diǎn),在點(diǎn)處作曲線(xiàn)的切線(xiàn)與曲線(xiàn)交于另一點(diǎn),在點(diǎn)處作曲線(xiàn)的切線(xiàn),設(shè)切線(xiàn)的斜率分別為.問(wèn):是否存在常數(shù),使得?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=2ax--(2+a)lnx(a≥0)
(Ⅰ)當(dāng)時(shí),求的極值;
(Ⅱ)當(dāng)a>0時(shí),討論的單調(diào)性;
(Ⅲ)若對(duì)任意的a∈(2,3),x­1,x2∈[1,3],恒有成立,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知為常數(shù),函數(shù)有兩個(gè)極值點(diǎn),則(  )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案