已知函數(shù)f(x)=lnx+
1x
+ax在[2,+∞)
上是減函數(shù),則實(shí)數(shù)a的取值范圍是
 
分析:根據(jù)題意,已知f(x)在區(qū)間[2,+∞)上是減函數(shù),即f′(x)≤0在區(qū)間[2,+∞)上恒成立,對(duì)于恒成立往往是把字母變量放在一邊即參變量分離,另一邊轉(zhuǎn)化為求函數(shù)在定義域下的最值,即可求解.
解答:解:f′(x)=
1
x
-
1
x2
+a,,∵f(x)在[2,+∞)上為減函數(shù),
∴x∈[2,+∞)時(shí),f′(x)=
1
x
-
1
x2
+a≤0恒成立.
即a≤
1
x2
-
1
x
恒成立.
設(shè)y=
1
x2
-
1
x
,t=
1
x
∈(0,
1
2
]
y=t2-t=(t-
1
2
)
2
-
1
4
-
1
4

∴ymin=-
1
4

則a≤ymin=-
1
4

故答案為:(-∞,-
1
4
]
點(diǎn)評(píng):本題主要考查了根據(jù)函數(shù)單調(diào)性求參數(shù)范圍的問(wèn)題,解題的關(guān)鍵將題目轉(zhuǎn)化成f′(x)≤0在區(qū)間[2,+∞)上恒成立進(jìn)行求解,同時(shí)考查了參數(shù)分離法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函數(shù)f(x)在P(0,f(0))的切線(xiàn)方程為y=5x+1,求實(shí)數(shù)a,b的值:
(2)當(dāng)a<3時(shí),令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx
的圖象在點(diǎn)P(2,f(2))處的切線(xiàn)方程為l:y=x+b
(1)求出函數(shù)y=f(x)的表達(dá)式和切線(xiàn)l的方程;
(2)當(dāng)x∈[
1
e
,e]
時(shí)(其中e=2.71828…),不等式f(x)<k恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
x2+a
(a為常數(shù)),直線(xiàn)l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點(diǎn)的橫坐標(biāo)為1.
(1)求直線(xiàn)l的方程及a的值;
(2)當(dāng)k>0時(shí),試討論方程f(1+x2)-g(x)=k的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
13
x3+x2+ax

(1)討論f(x)的單調(diào)性;
(2)設(shè)f(x)有兩個(gè)極值點(diǎn)x1,x2,若過(guò)兩點(diǎn)(x1,f(x1)),(x2,f(x2))的直線(xiàn)l與x軸的交點(diǎn)在曲線(xiàn)y=f(x)上,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-
32
ax2+b
,a,b為實(shí)數(shù),x∈R,a∈R.
(1)當(dāng)1<a<2時(shí),若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(2)在(1)的條件下,求經(jīng)過(guò)點(diǎn)P(2,1)且與曲線(xiàn)f(x)相切的直線(xiàn)l的方程;
(3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案