是否存在常數(shù),使等式對于一切都成立?若不存在,說明理由;若存在,請用數(shù)學歸納法證明?

,證明詳見解析.

解析試題分析:先從特殊情形,等式必須成立,求出值,然后用數(shù)學歸納法加以證明,在這里必須指出的是:若題目沒有講要用數(shù)學歸納法證明,我們也應從數(shù)學歸納法考慮,因為等式的左邊我們無法通過數(shù)列求和的知識解決,其次本題是與自然數(shù)有關的命題證明,我們應優(yōu)先考慮數(shù)學歸納法,證明時必須嚴格遵循數(shù)學歸納法的證題步驟,做到規(guī)范化.
試題解析:若存在常數(shù)使等式成立,則將代入上式,有,即有 對于一切成立.                   5分
數(shù)學歸納法證明如下:
證明如下:(1)當時,左邊=,右邊=,所以等式成立,
(2)假設)時等式成立,即,
時,


也就是說,當時,等式成立,
綜上所述,可知等式對任何都成立.                                       12分
考點:數(shù)學歸納法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

將側棱相互垂直的三棱錐稱為“直角三棱錐”,三棱錐
的側面和底面分別叫直角三棱錐的“直角面和斜面”;過三棱錐頂點及斜面任兩邊中點的截面均稱為斜面的“中面”.已知直角三角形具有性質:“斜邊的中線長等于斜邊邊長的一半”.仿照此性質寫出直角三棱錐具有的性質:                                                     .
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)已知a>b>c,且a+b+c=0,用分析法求證:<a.
(2)f(x)=,先分別求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后歸納猜想一般性結論,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列的前項和為,且滿足
(1)求,,的值并寫出其通項公式;
(2)用三段論證明數(shù)列是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某少數(shù)民族的刺繡有著悠久的歷史,如圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第n個圖形包含f(n)個小正方形.

(1)求出f(5)的值;
(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關系式,并根據(jù)你得到的關系式求出f(n)的表達式;
(3)求+…+的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

都是正實數(shù),且.求證:中至少有一個成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列滿足a1=0且 = 1.
(1) 求的通項公式;
(2) 設bn,記Sn,證明:Sn<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

對于命題:如果是線段上一點,則;將它類比到平面的情形是:若是△內一點,有;將它類比到空間的情形應該是:若是四面體內一點,則有__________________________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

下面給出了關于復數(shù)的三種類比推理:
(1)復數(shù)的加減法運算法則可以類比多項式的加減法運算法則;
(2)由向量的性質=類比得到復數(shù)的性質
;
(3)由向量加法的幾何意義可以類比得到復數(shù)的加法的幾何意義。
其中類比錯誤的是___________

查看答案和解析>>

同步練習冊答案