如圖,矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.若BC邊上的點(diǎn)Q滿足PQ⊥QD,當(dāng)存在兩個這樣的點(diǎn)時,求a滿足的條件.

答案:
解析:

  解:∵PQ⊥QD,又PA⊥平面AC,

  ∴AQ⊥QD.

  設(shè)BQ=x(0<x<a),則CQ=a-x,

  ∴AD2=AQ2+DQ2=AB2+BQ2+CQ2+DC2

  ∴a2=1+x2+(a-x)2+1,

  ∴x2-ax+1=0.

  當(dāng)Δ=a2-4>0時,上式有兩根,從而滿足條件的點(diǎn)有兩個,且此時方程的兩根為:

  x=,均小于a.

  ∴a>2.


提示:

本題利用空間中的垂直關(guān)系轉(zhuǎn)化為方程問題,從而利用方程的思想來解決問題.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AB=
8
3
3
,BC=2,橢圓M的中心和準(zhǔn)線分別是已知矩形的中心和一組對邊所在直線,矩形的另一組對邊間的距離為橢圓的短軸長,橢圓M的離心率大于0.7.
(I)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求橢圓M的方程;
(II)過橢圓M的中心作直線l與橢圓交于P,Q兩點(diǎn),設(shè)橢圓的右焦點(diǎn)為F2,當(dāng)∠PF2Q=
3
時,求△PF2Q的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD中,AB=1,AD=2,M為AD的中點(diǎn),則
BM
BD
的值為
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A 若方程ax-x-a=0有兩個實(shí)數(shù)解,則a的取值范圍是
(1,+∞)
(1,+∞)

B 如圖,矩形ABCD中邊長AB=2,BC=1,E為BC的中點(diǎn),若F為正方形內(nèi)(含邊界)任意一點(diǎn),則
AE
AF
的最大值為
9
2
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD中,DC=
3
,AD=1,在DC上截取DE=1,將△ADE沿AE翻折到D'點(diǎn),當(dāng)D'在平面ABC上的射影落在AE上時,四棱錐D'-ABCE的體積是
2
6
-
2
12
2
6
-
2
12
;當(dāng)D'在平面ABC上的射影落在AC上時,二面角D'-AE-B的平面角的余弦值是
2-
3
2-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)如圖,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD
(1)問BC邊上是否存在Q點(diǎn),使
PQ
QD
,說明理由.
(2)問當(dāng)Q點(diǎn)惟一,且cos<
BP
,
QD
>=
10
10
時,求點(diǎn)P的位置.

查看答案和解析>>

同步練習(xí)冊答案