【題目】已知函數(shù)

,討論函數(shù)的單調性;

在區(qū)間上恒成立,求實數(shù)的取值范圍

【答案】(1)見解析(2)

【解析】試題分析:求出,分四種情況討論,分別令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間;( ,原問題等價于在區(qū)間上恒成立,因為,要想在區(qū)間上恒成立,只需,可得時,利用導數(shù)研究函數(shù)的單調性,從而求出進而可得結論.

試題解析: ,

, , ,

所以在區(qū)間上單調遞減,在區(qū)間上單調遞增;

,, , , ,

所以在區(qū)間上單調遞減,在區(qū)間上單調遞增;

, , , , ,

所以在區(qū)間上單調遞減,在區(qū)間上單調遞增;

, ,所以在定義域上單調遞增;

綜上 在區(qū)間上單調遞減,在區(qū)間上單調遞增

, 在定義域上單調遞增;

, 在區(qū)間上單調遞減在區(qū)間上單調遞增;

, 在區(qū)間上單調遞減,在區(qū)間上單調遞增

)令

原問題等價于在區(qū)間上恒成立,可見,

要想在區(qū)間上恒成立,首先必須要

,

另一方面當, ,由于可見,

所以在區(qū)間上單調遞增,所以在區(qū)間上單調遞減

成立,故原不等式成立

綜上在區(qū)間上恒成立,則實數(shù)的取值范圍為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】是圓上的任意一點,是過點且與軸垂直的直線,是直線軸的交點,點在直線上,且滿足當點在圓上運動時,記點的軌跡為曲線

求曲線的方程;

已知直線與曲線交于兩點,點關于軸的對稱點為,設,證明:直線過定點,并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了解用戶對其產(chǎn)品的滿意度,從A、B兩地區(qū)分別隨機調查了20個用戶,得到用戶對產(chǎn)品的滿意度評分如下:

A地區(qū):

62

73

81

92

95

85

74

64

53

76


78

86

95

66

97

78

88

82

76

89

B地區(qū):

73

83

62

51

91

46

53

73

64

82


93

48

95

81

74

56

54

76

65

79

)根據(jù)兩組數(shù)據(jù)完成兩地區(qū)用戶滿意度評分的莖葉圖,并通過莖葉圖比較兩地區(qū)滿意度的平均值及分散程度(不要求算出具體值,給出結論即可):

)根據(jù)用戶滿意度評分,將用戶的滿意度從低到高分為三個等級:

滿意度評分

低于70

70分到89

不低于90

滿意度等級

不滿意

滿意

非常滿意

記事件C“A地區(qū)用戶的滿意度等級高于B地區(qū)用戶的滿意度等級,假設兩地區(qū)用戶的評價結果相互獨立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應事件發(fā)生的概率,求C的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某自動包裝機包袋的食鹽中,隨機抽取袋作為樣本,按各袋的質量(單位: )分成四組, ,相應的樣本頻率分布直方圖如圖所示.

Ⅰ)估計樣本的中位數(shù)是多少?落入的頻數(shù)是多少?

Ⅱ)現(xiàn)從這臺自動包裝機包袋的大批量食鹽中,隨機抽取,表示食鹽質量屬于的袋數(shù),依樣本估計總體的統(tǒng)計思想,的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)上是增函數(shù),則的取值范圍是( 。

A. B. C. D.

【答案】C

【解析】

若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則x2﹣ax+3a>0且f(2)0,根據(jù)二次函數(shù)的單調性,我們可得到關于a的不等式,解不等式即可得到a的取值范圍.

若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),

則當x∈[2,+∞)時,

x2﹣ax+3a>0且函數(shù)f(x)=x2﹣ax+3a為增函數(shù)

,f(2)=4+a>0

解得﹣4<a≤4

故選:C.

【點睛】

本題考查的知識點是復合函數(shù)的單調性,二次函數(shù)的性質,對數(shù)函數(shù)的單調區(qū)間,其中根據(jù)復合函數(shù)的單調性,構造關于a的不等式,是解答本題的關鍵.

型】單選題
束】
10

【題目】圓錐的高和底面半徑之比,且圓錐的體積,則圓錐的表面積為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面四個命題:

在定義域上單調遞增;

②若銳角,滿足,則

是定義在上的偶函數(shù),且在上是增函數(shù),若,則;

④函數(shù)的一個對稱中心是;

其中真命題的序號為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】恩格爾系數(shù)是食品支出總額占個人消費支出總額的比重.恩格爾系數(shù)越小,即家庭的消費支出中用于購買食物的支出所占比例越小,更多的消費用于精神追求,標志著家庭越富裕.恩格爾系數(shù)達59%以上為貧困,5059%為溫飽,4050%為小康,3040%為富裕,低于30%為最富裕.下圖給出了19802017年我國城鎮(zhèn)居民和農村居民家庭恩格爾系數(shù)的變化統(tǒng)計圖,對所列年份進行分析,則下列結論正確的是(

A.農村和城鎮(zhèn)居民家庭消費支出呈下降趨勢

B.農村居民家庭比城鎮(zhèn)居民家庭用于購買食品的支出更多

C.1995年我國農村居民初步達到小康標準

D.2015年城鎮(zhèn)和農村居民食品支出占個人消費支出總額之比大于30.6%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】Ox2+y28內有一點P(﹣1,2),AB為過點P且傾斜角為α的弦,

1)當α135°時,求AB的長;

2)當弦AB被點P平分時,寫出直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,△PCD為等邊三角形,平面PAC⊥平面PCDPACD,CD=2AD=3.

1)設G,H分別為PB,AC的中點,求證:GH//平面PAD;

2)求證:⊥平面PCD;

3)求直線AD與平面PAC所成角的正弦值.

查看答案和解析>>

同步練習冊答案