(2013•海淀區(qū)二模)設(shè)A是由m×n個(gè)實(shí)數(shù)組成的m行n列的數(shù)表,如果某一行(或某一列)各數(shù)之和為負(fù)數(shù),則改變?cè)撔校ɑ蛟摿校┲兴袛?shù)的符號(hào),稱為一次“操作”.
(Ⅰ) 數(shù)表A如表1所示,若經(jīng)過兩次“操作”,使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)實(shí)數(shù),請(qǐng)寫出每次“操作”后所得的數(shù)表(寫出一種方法即可); 
1 2 3 -7
-2 1 0 1
表1
(Ⅱ) 數(shù)表A如表2所示,若必須經(jīng)過兩次“操作”,才可使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)整數(shù),求整數(shù)a的所有可能值;
a a2-1 -a -a2
2-a 1-a2 a-2 a2
表2
(Ⅲ)對(duì)由m×n個(gè)實(shí)數(shù)組成的m行n列的任意一個(gè)數(shù)表A,能否經(jīng)過有限次“操作”以后,使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)整數(shù)?請(qǐng)說明理由.
分析:解:(I)根據(jù)題中一次“操作”的含義,將原數(shù)表改變第4列,再改變第2行即可;或者改變第2行,改變第4列也可得(寫出一種即可) 
(II)  每一列所有數(shù)之和分別為2,0,-2,0,每一行所有數(shù)之和分別為-1,1;①如果操作第三列,第一行之和為2a-1,第二行之和為5-2a,列出不等關(guān)系解得a,b;②如果操作第一行,可解得a值;
(III) 按要求對(duì)某行(或某列)操作一次時(shí),則該行的行和(或該列的列和),由負(fù)整數(shù)變?yōu)檎麛?shù),都會(huì)引起該行的行和(或該列的列和)增大,從而也就使得數(shù)陣中mn個(gè)數(shù)之和增加,且增加的幅度大于等于1-(-1)=2,但是每次操作都只
是改變數(shù)表中某行(或某列)各數(shù)的符號(hào),而不改變其絕對(duì)值,顯然,數(shù)表中mn個(gè)數(shù)之和必然小于等于
m
i=1
n
j=1
|aij|
,可見其增加的趨勢(shì)必在有限次之后終止,終止之時(shí)必然所有的行和與所有的列和均為非負(fù)整數(shù),故結(jié)論成立.
解答:解:(I)
法1:
1 2 3 -7
-2 1 0 1
改變第4列得:
1 2 3 7
-2 1 0 -1
改變第2行得:
1 2 3 7
2 -1 0 1
法2:
1 2 3 -7
-2 1 0 1
改變第2行得:
1 2 3 7
2 -1 0 -1
改變第4列得:
1 2 3 7
2 -1 0 1
法3:
1 2 3 -7
-2 1 0 1
改變第1列得:
-1 2 3 7
2 1 0 -1
改變第4列得:
-1 2 3 7
2 1 0 -1
(寫出一種即可)                                                  …(3分)

(II)   每一列所有數(shù)之和分別為2,0,-2,0,每一行所有數(shù)之和分別為-1,1;
①如果操作第三列,則
a a2-1 a -a2
2-a 1-a2 -a+2 a2
則第一行之和為2a-1,第二行之和為5-2a,
2a-1≥0
5-2a≥0
,解得a=1,a=2.…(6分)
②如果操作第一行
-a -a2+1 a a2
2-a 1-a2 a-2 a2
則每一列之和分別為2-2a,2-2a2,2a-2,2a2
解得a=1                                     …(9分)
綜上a=1                                             …(10分)
(III) 證明:按要求對(duì)某行(或某列)操作一次時(shí),則該行的行和(或該列的列和)
由負(fù)整數(shù)變?yōu)檎麛?shù),都會(huì)引起該行的行和(或該列的列和)增大,
從而也就使得數(shù)陣中mn個(gè)數(shù)之和增加,且增加的幅度大于等于1-(-1)=2,
但是每次操作都只是改變數(shù)表中某行(或某列)各數(shù)的符號(hào),而不改變其絕對(duì)值,
顯然,數(shù)表中mn個(gè)數(shù)之和必然小于等于
m
i=1
n
j=1
|aij|
,
可見其增加的趨勢(shì)必在有限次之后終止,終止之時(shí)必然所有的行和與所有的列和均為非負(fù)整數(shù),故結(jié)論成立 …(13分)
點(diǎn)評(píng):本題主要考查了進(jìn)行簡(jiǎn)單的演繹推理,以及新定義的理解和切變變換的應(yīng)用,同時(shí)考查了分析問題的能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•海淀區(qū)二模)雙曲線C的左右焦點(diǎn)分別為F1,F(xiàn)2,且F2恰為拋物線y2=4x的焦點(diǎn),設(shè)雙曲線C與該拋物線的一個(gè)交點(diǎn)為A,若△AF1F2是以AF1為底邊的等腰三角形,則雙曲線C的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•海淀區(qū)二模)已知函數(shù)f(x)=ex,A(a,0)為一定點(diǎn),直線x=t(t≠0)分別與函數(shù)f(x)的圖象和x軸交于點(diǎn)M,N,記△AMN的面積為S(t).
(Ⅰ)當(dāng)a=0時(shí),求函數(shù)S(t)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a>2時(shí),若?t0∈[0,2],使得S(t0)≥e,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•海淀區(qū)二模)已知橢圓M:
x2
a2
+
y2
b2
=1  (a>b>0)
的四個(gè)頂點(diǎn)恰好是一邊長(zhǎng)為2,一內(nèi)角為60°的菱形的四個(gè)頂點(diǎn).
(Ⅰ)求橢圓M的方程;
(Ⅱ)直線l與橢圓M交于A,B兩點(diǎn),且線段AB的垂直平分線經(jīng)過點(diǎn)(0,  -
1
2
)
,求△AOB(O為原點(diǎn))面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•海淀區(qū)二模)集合A={x|(x-1)(x+2)≤0},B={x|x<0},則A∪B=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案