在橢圓上到直線l:3x-2y-16=0距離最短的點(diǎn)的坐標(biāo)是______________,最短距離是__________。

答案:
解析:

);


提示:

設(shè)橢圓上的任意一點(diǎn)為M(2cosθ,sinθ)則M點(diǎn)到直線l的距離

∴當(dāng)φθ=時(shí),d有最小值

此時(shí),θ=φ,sinθ=-cosφ=-,cosθ=sinφ=

M點(diǎn)坐標(biāo)是()。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,F(xiàn)是中心在原點(diǎn)、焦點(diǎn)在x軸上的橢圓C的右焦點(diǎn),\直線l:x=4是橢圓C的右準(zhǔn)線,F(xiàn)到直線l的距離等于3.
(1)求橢圓C的方程;
(2)點(diǎn)P是橢圓C上動(dòng)點(diǎn),PM⊥l,垂足為M.是否存在點(diǎn)P,使得△FPM為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,直線l:y=
3
(x+1)
與橢圓相交于A、B兩點(diǎn),若線段AB的中點(diǎn)M到原點(diǎn)的距離為1,且|AB|=2.
(1)求點(diǎn)M坐標(biāo);
(2)求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,在x軸負(fù)半軸上有一點(diǎn)B,滿足AB⊥AF2.且F1為BF2的中點(diǎn).
(1)求橢圓C的離心率;
(2)D是過A,B,F(xiàn)2三點(diǎn)的圓上的點(diǎn),D到直線l:x-
3
y-3=0的最大距離等于橢圓長(zhǎng)軸的長(zhǎng),求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
8
+
y2
2
=1
經(jīng)過點(diǎn)M(2,1),O為坐標(biāo)原點(diǎn),平行于OM的直線l在y軸上的截距為m(m≠0).
(1)當(dāng)m=3時(shí),判斷直線l與橢圓的位置關(guān)系(寫出結(jié)論,不需證明);
(2)當(dāng)m=3時(shí),P為橢圓上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最小值;
(3)如圖,當(dāng)l交橢圓于A、B兩個(gè)不同點(diǎn)時(shí),求證直線MA、MB與x軸始終圍成一個(gè)等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,焦距為8,且經(jīng)過點(diǎn)(0,3)
(1)求此橢圓的方程
(2)若已知直線l:4x-5y+40=0,問:橢圓C上是否存在一點(diǎn),使它到直線l的距離最?最小距離是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案