設(shè)集合A={x|4x-2x+2+a=0,x∈R}.
(1)若A中僅有一個元素,求實(shí)數(shù)a的取值集合B;
(2)若對于任意a∈B,不等式x2-6x<a(x-2)恒成立,求x的取值范圍.
分析:(1)令2x=t(t>0),設(shè)f(t)=t2-4t+a,通過換元可知:由f(t)=0在(0,+∞)上僅有一根或兩相等實(shí)根,通過分類討論利用△及其根與系數(shù)的關(guān)系即可得出;
(2)要使原不等式對任意a∈(-∞,0]∪{4}恒成立,即g(a)=(x-2)a-(x2-6x)>0恒成立.轉(zhuǎn)化為一次函數(shù),利用其單調(diào)性只須
x-2≤0
g(4)>0
解出即可.
解答:解:(1)令2x=t(t>0),設(shè)f(t)=t2-4t+a,由f(t)=0在(0,+∞)上僅有一根或兩相等實(shí)根,
①f(t)=0有兩等根時,△=0⇒16-4 a=0⇒a=4.
驗(yàn)證:t2-4t+4=0⇒t=2∈(0,+∞)這時x=1.
②f(t)=0有一正根和一負(fù)根時,f(0)<0⇒a<0.
③若f(0)=0,則a=0,此時4x-4•2x=0⇒2x=0,(舍去),或2x=4,∴x=2,此時A中只有一個元素.
∴實(shí)數(shù)a的取值集合為B={a|a≤0或a=4}.
(2)要使原不等式對任意a∈(-∞,0]∪{4}恒成立,即g(a)=(x-2)a-(x2-6x)>0恒成立.
只須
x-2≤0
g(4)>0
x≤2
x2-10x+8<0
⇒5-
17
<x≤2.
點(diǎn)評:熟練掌握換元法、指數(shù)函數(shù)的單調(diào)性、一元二次方程的判別式△及根與系數(shù)的關(guān)系、一次函數(shù)的單調(diào)性等是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x||4x-1|≥9,x∈R},B={x|
x
x+3
≥0,x∈R},則A∩B=( 。
A、(-3,-2]
B、(-3,-2]∪[0,
5
2
]
C、(-∞,-3]∪[
5
2
,+∞)
D、(-∞,-3)∪[
5
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•嘉定區(qū)一模)設(shè)集合A={x|4x-1≥9,x∈R},B={x|
x
x+3
≥0,x∈R},則A∩B=
{x|x≥
5
2
}
{x|x≥
5
2
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x||4x-1|≥9,x∈R},B={x|≥0,x∈R},則AB=         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x||4x-1|≥9,x∈R},B={x|≥0,x∈R},則A∩B=____________.

查看答案和解析>>

同步練習(xí)冊答案