.(理)在正方體ABCD—A1B1C1D1中,M、N分別是棱B1C1、AD的中點,直

線AD與平面BMD1N所成角的余弦值為         (    )

A.                    B.              C.      D.

 

 

【答案】

B

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2005•靜安區(qū)一模)已知正方體ABCD-A1B1C1D1的棱長為2,點E、F分別在底面正方形的邊AB、BC上,且AE=CF=
23
,點G為棱A1B1的中點.
(1)在圖中畫出正方體過三點E、F、G的截面,并保留作圖痕跡;
(2)(理)求(1)中的截面與底面ABCD所成銳二面角的大小.
(3)(文)求出直線EC1與底面ABCD所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在棱長為2的正方體ABCD-A1B1C1D1中,M為AB中點.
(1)求直線B1C與DM所成角的余弦; 
(2)(文)求點M到平面DB1C的距離;
(3)(理)求二面角M-B1C-D的大。

查看答案和解析>>

科目:高中數(shù)學 來源:2008年高考數(shù)學模擬創(chuàng)新試題分類匯編(空間幾何) 題型:022

(理)已知ABCD-A1B1C1D1是棱長為a的正方體,P是A1D1上的定點,Q是C1D1上的動點,長為b(0<b<A.b為常數(shù))的線段EF在棱AB上滑動,則四面體P-QEF的體積變化情況是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在棱長為1的正方體ABCD—A1B1C1D1中,P、M、N分別為棱DD1、AB、BC的中點.

(1)求二面角B1MNB的正切值;

(2)證明PB⊥平面MNB1;

(3)(理)畫出此正方體的一個表面展開圖,使其滿足“有4個正方形面相連成一個長方形”的條件,并求出展開圖中P、B兩點間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:2006年上海市靜安區(qū)高考數(shù)學一模試卷(文理合卷)(解析版) 題型:解答題

已知正方體ABCD-A1B1C1D1的棱長為2,點E、F分別在底面正方形的邊AB、BC上,且,點G為棱A1B1的中點.
(1)在圖中畫出正方體過三點E、F、G的截面,并保留作圖痕跡;
(2)(理)求(1)中的截面與底面ABCD所成銳二面角的大。
(3)(文)求出直線EC1與底面ABCD所成角的大。

查看答案和解析>>

同步練習冊答案