下列函數(shù)經(jīng)過原點(diǎn)的是(  )
A、y=2x-1
B、y=x-1
C、y=log2x
D、y=-x2+1
考點(diǎn):對數(shù)函數(shù)的定義域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)x=0時(shí),函數(shù)值y=0是否成立,判斷函數(shù)是否經(jīng)過原點(diǎn).
解答: 解:對于A,x=0時(shí),y=0,∴函數(shù)y=2x-1經(jīng)過原點(diǎn);
對于B,x=0時(shí),y=-1,∴函數(shù)y=x-1不經(jīng)過原點(diǎn);
對于C,x=0時(shí),函數(shù)y=log2x無意義,∴函數(shù)不經(jīng)過原點(diǎn);
對于D,x=0時(shí),y=1,∴函數(shù)不經(jīng)過原點(diǎn).
故選:A.
點(diǎn)評:本題考查了函數(shù)圖象是否經(jīng)過原點(diǎn)的問題,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)p:實(shí)數(shù)x滿足x2-4ax+3a2<0(其中a>0),q:實(shí)數(shù)x滿足(x-3)(x-2)<0
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“若x,y都是正數(shù),則x+y為正數(shù)”的否命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知 f(α)=
sin(
2
+α)+2sin(π-α)
3cos(
π
2
-α)-cos(π-α)

(Ⅰ)化簡f(α);
(Ⅱ)已知tanα=3,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
x-3
的定義域是( 。
A、(0,+∞)
B、[0,+∞)
C、[3,+∞)
D、(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|x>-2},B={x|x<3},求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,A1B⊥平面ABC,AB⊥AC.
(Ⅰ)求證:AC⊥BB1
(Ⅱ)若P是棱B1C1的中點(diǎn),求平面PAB將三棱柱ABC-A1B1C1分成的兩部分體積之比.?dāng)]啊.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3x+1,則過點(diǎn)(1,-1)的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=
6
,O為AC與BD的交點(diǎn),E為棱PB上一點(diǎn).
(Ⅰ)證明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱錐P-EAD的體積.

查看答案和解析>>

同步練習(xí)冊答案