函數(shù),的最小值為               
4
本試題主要是考查了函數(shù)的最值的運用?梢赃\用導(dǎo)數(shù)的思想判定單調(diào)性得到。
因為函數(shù),,那么

可知在(0,2)遞減,在(2,+)上遞增,因此可知當(dāng)x=2函數(shù)取得極小值f(2)=4,即為最小值為4.故答案為4.
解決該試題的關(guān)鍵是求解導(dǎo)數(shù),判定單調(diào)性,易錯點就是直接運用均值不等式求解最值,不考慮等號是否能取到。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)求函數(shù)上的最小值;
(2)若函數(shù)有兩個不同的極值點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)處取得極大值,則的值為( 。
A.B.- C.-2或一D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)討論函數(shù)在定義域內(nèi)的極值點的個數(shù);
(2)若函數(shù)處取得極值,對,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
⑴若的極值點,求的值;
⑵若的圖象在點處的切線方程為,求在區(qū)間上的最大值;
⑶當(dāng)時,若在區(qū)間上不單調(diào),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)f(x)=x3-3bx+b在區(qū)間(0,1)內(nèi)有極小值,則b應(yīng)滿足的條件是     _      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù) 的最大值記為g(t),當(dāng)t在實數(shù)范圍內(nèi)變化時g(t)最小值為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=x3ax2+(a+6)x+1有極大值和極小值,則實數(shù)a的取值范圍是(  )
A.-1<a<2B.-3<a<6
C.a<-3或a>6 D.a<-1或a>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,函數(shù)上是單調(diào)增函數(shù),則的最大值是
(   )
A.0B.1C.2 D.3

查看答案和解析>>

同步練習(xí)冊答案