(本小題滿分14分)
如圖,三棱柱中,側(cè)面底面,,
,O中點.
(Ⅰ)證明:平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)在上是否存在一點,使得平面,若不存在,說明理由;若存在,
確定點的位置.
存在這樣的點E,E的中點.   
(Ⅰ)證明:因為,且OAC的中點,
所以.                                                             ………………1分
又由題意可知,平面平面,交線為,且平面,    
所以平面.                                                  ………………4分
(Ⅱ)如圖,以O為原點,所在直線分別為xy,z軸建立空間直角坐標系.
由題意可知,
所以得:
則有:                                  ………………6分
設(shè)平面的一個法向量為,則有
,令,得
所以.                                      ………………7分
.                         ………………9分
因為直線與平面所成角和向量所成銳角互余,所以.                                                                      ………………10分
(Ⅲ)設(shè)                                    ………………11分
,得
所以        ………………12分
平面,得 ,                              ………………13分

即存在這樣的點EE的中點.                           ………………14分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在長方體ABCD-A1B1C1D1中,E,H分別是棱A1B1,D1C1上的點(點E與B1不重合),且EH∥A1 D1. 過EH的平面與棱BB1,CC1相交,交點分別為F,G。

(I)           證明:AD∥平面EFGH;
(II)        設(shè)AB=2AA1 ="2" a .在長方體ABCD-A1B1C1D1內(nèi)隨機選取一點。記該點取自幾何體A1ABFE-D1DCGH內(nèi)的概率為p,當點E,F(xiàn)分別在棱A1B1上運動且滿足EF=a時,求p的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知矩形ABCD中,,,現(xiàn)沿對角線折成二面角,使(如圖).
(I)求證:;
(II)求二面角平面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐的底面是矩形,
底面,PBC邊的中點,SB
平面ABCD所成的角為45°,且AD=2,SA=1.
(1)求證:平面SAP
(2)求二面角ASDP的大小.          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(14分)如圖,四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900

(1)求證:PC⊥BC
(2)求點A到平面PBC的距離

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在底面是菱形的四棱錐P-ABC中,∠ABC=600PA=AC=aPB=PD=,點EPD上,且PE:ED=2:1.
(Ⅰ)證明PA⊥平面ABCD;
(Ⅱ)求以AC為棱,EACDAC為面的二面角的大。

題18圖

 
 

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

2條直線將一個平面最多分成4部分,3條直線將一個平面最多分成7部分, 4條直線將一個平面最多分成11部分,……;,,;……
(1)條直線將一個平面最多分成多少個部分(>1)?證明你的結(jié)論;
(2)個平面最多將空間分割成多少個部分(>2)?證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

、表示三條不同的直線,表示平面,給出下列命題:
①若,則;②若,,則;
③若,,則;④若,,則.
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

四面體ABCD中,共頂點A的三條棱兩兩相互垂直,且其長分別為,若四面體的四個頂點同在一個球面上,則這個球的表面積為    。

查看答案和解析>>

同步練習冊答案