已知函數(shù)f(x)=
-x,(x>0)
x2,(x<0)
,則f[f(3)]=(  )
A、-3B、3C、-9D、9
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知中函數(shù)f(x)=
-x,(x>0)
x2,(x<0)
,將x=3代入由內(nèi)到外依次代入可得f[f(3)]的值.
解答: 解:∵函數(shù)f(x)=
-x,(x>0)
x2,(x<0)

∴f[f(3)]=f(-3)=9,
故選:D
點(diǎn)評:本題考查的知識點(diǎn)是分段函數(shù)求值,直接代入逐步計算即可得到答案.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:log2(2x-1)<log2(-x+5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①已知集合M滿足∅?M⊆{1,2,3},且M中至少有一個奇數(shù),這樣的集合M有6個;
②已知函數(shù)f(x)=
33x-1
ax2+ax-3
的定義域是R,則實數(shù)a的取值范圍是(-12,0);
③函數(shù)f(x)=loga(x-3)+1(a>0且a≠1)圖象恒過定點(diǎn)(4,2);
④已知函數(shù)f(x)=x2+bx+c對任意實數(shù)t都有f(3+t)=f(3-t),則f(1)>f(4)>f(3).
其中正確的命題序號是
 
(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1、拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為坐標(biāo)原點(diǎn)O,從每條曲線上各取兩個點(diǎn),將其坐標(biāo)記錄于表中:
x3-24
2
y-2
3
0-4
2
2
(Ⅰ)求C1、C2的標(biāo)準(zhǔn)方程;
(Ⅱ)請問是否存在直線l同時滿足條件:(。┻^C2的焦點(diǎn)F;(ⅱ)與C1交于不同兩點(diǎn)Q、R,且滿足
OQ
OR
?若存在,求出直線l的方程;若不存在,請說明理由;
(Ⅲ)已知橢圓C1的左頂點(diǎn)為A,過A作兩條互相垂直的弦AM、AN分別另交橢圓于M、N兩點(diǎn).當(dāng)直線AM的斜率變化時,直線MN是否過x軸上的一定點(diǎn),若過定點(diǎn),請給出證明,并求出該定點(diǎn)坐標(biāo);若不過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的定義域:
(1)y=
1
1-log7x

(2)y=
log
1
2
x

(3)y=
(
1
5
)x-1

(4)y=log2(x2+x-2)
(5)y=
log0.1(3x-2)

(6)y=
lg(2x-1)
1-x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=e
kx-1
x+1
(e是自然對數(shù)的底數(shù)).
(1)若函數(shù)f(x)是(-1,+∞)上的增函數(shù),求k的取值范圍;
(2)若對任意的x∈(0,+∞),都有f(x)<x+1,求滿足條件的最大整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且滿足Sn+n=2an(n∈N*).
(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)若bn=(2n+1)an+2n+1,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(x,2,-2),向量
b
=(2,y,4),若
a
b
,則x+y=( 。
A、5B、-5C、3D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=-x3+2x在橫坐標(biāo)為-1的點(diǎn)處的切線為L,則點(diǎn)(3,2)到L的距離是(  )
A、
7
2
2
B、
9
2
2
C、
11
2
2
D、
9
10
10

查看答案和解析>>

同步練習(xí)冊答案