函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x∈(0,+∞)時,f(x)=x2+2x,那么當(dāng)x∈(-∞,0)時,f(x)的解析式是


  1. A.
    y=x2+2x
  2. B.
    y=x2-2x
  3. C.
    y=-x2+2x
  4. D.
    y=-x2-2x
B
分析:令x<0,則-x>0,由所給表達(dá)式可求f(-x),再根據(jù)偶函數(shù)性質(zhì)可得f(x)=f(-x),從而可得答案.
解答:令x<0,則-x>0,∴f(-x)=x2-2x,
∵函數(shù)f(x)是定義在R上的偶函數(shù),
∴f(x)=f(-x)=x2-2x,
故選B.
點(diǎn)評:本題考查奇函數(shù)的性質(zhì)及函數(shù)解析式的求解,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),其最小正周期為3,且x∈(-
3
2
,0)時
,f(x)=log2(-3x+1),則f(2011)=( 。
A、-2
B、2
C、4
D、log27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在N*的函數(shù),且滿足f(f(k))=3k,f(1)=2,設(shè)an=f(3n-1),b1=1,bn-log3f(an)=b1-log3f(a1).
(I)求bn的表達(dá)式;
(II)求證:
b1
f(a1)
+
b2
f(a2) 
+…+
bn
f(an)
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

奇函數(shù)f(x)是定義在[-1,1]上的增函數(shù),且f(x-1)+f(1-2x)<0,則實(shí)數(shù)x的取值范圍為
(0,1]
(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•臨沂二模)已知函數(shù)f(x)是定義在[-e,0)∪(0,e]上的奇函數(shù),當(dāng)x∈[-e,0)時,f(x)=ax-ln(-x),(a<0,a∈R)
(I)求f(x)的解析式;
(Ⅱ)是否存在實(shí)數(shù)a,使得當(dāng)x∈(0,e]時f(x)的最大值是-3,如果存在,求出實(shí)數(shù)a的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

注:此題選A題考生做①②小題,選B題考生做①③小題.
已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時有f(x)=
4xx+4

①求f(x)的解析式;
②(選A題考生做)求f(x)的值域;
③(選B題考生做)若f(2m+1)+f(m2-2m-4)>0,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案