【題目】設(shè)函數(shù)是定義在上的可導函數(shù),其導函數(shù)為,且有,則不等式 的解集為

A. B. C. D.

【答案】B

【解析】分析:根據(jù)題意,設(shè)g(x)=x2f(x),x<0,求出導數(shù),分析可得g′(x)0,則函數(shù)g(x)在區(qū)間(﹣,0)上為減函數(shù),結(jié)合函數(shù)g(x)的定義域分析可得:原不等式等價于,解可得x的取值范圍,即可得答案.

詳解:根據(jù)題意,設(shè)g(x)=x2f(x),x<0,

其導數(shù)g′(x)=[x2f(x)]′=2xf(x)+x2f′(x)=x(2f(x)+xf′(x)),

又由2f(x)+xf′(x)>x20,且x<0,

則g′(x)0,則函數(shù)g(x)在區(qū)間(﹣,0)上為減函數(shù),

(x+2018)2f(x+2018)﹣4f(﹣2)>0

(x+2018)2f(x+2018)>(﹣2)2f(﹣2)g(x+2018)>g(﹣2),

又由函數(shù)g(x)在區(qū)間(﹣,0)上為減函數(shù),

則有

解可得:x<﹣2020,

即不等式(x+2018)2f(x+2018)﹣4f(﹣2)>0的解集為(﹣∞,﹣2020);

故選:B.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

設(shè)函數(shù)fx=x+ax2+blnx,曲線y=fx)過P1,0),且在P點處的切斜線率為2.

I)求a,b的值;

II)證明:f(x)≤2x-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知復數(shù)z=+(a25a-6)i(a∈R).試求實數(shù)a分別為什么值時,z分別為(1)實數(shù)?(2)虛數(shù)?(3)純虛數(shù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且過點.

(1)求橢圓的方程;

(2)若過點且斜率為k的直線l與橢圓相交于不同的兩點A,B,試問在x軸上是否存在點,使是與無關(guān)的常數(shù)?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)p:f(x)=ex+lnx+2x2+mx+1在(0,+∞)上單調(diào)遞增,q:m≥﹣5,則p是q的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)討論單調(diào)性;

2)當,函數(shù)的最大值為,求不超過的最大整數(shù) .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面△ABC是邊長為2的等邊三角形,D為AB中點.

(1)求證:BC1∥平面A1CD;
(2)若四邊形BCC1B1是正方形,且A1D= ,求直線A1D與平面CBB1C1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動,提出了完成某項生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時間(單位:min)繪制了如下莖葉圖:

(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;

(2)求40名工人完成生產(chǎn)任務(wù)所需時間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時間超過和不超過的工人數(shù)填入下面的列聯(lián)表:

超過

不超過

第一種生產(chǎn)方式

第二種生產(chǎn)方式

(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認為兩種生產(chǎn)方式的效率有差異?

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC中,角A、B、C所對的邊分別為a、b、c,且2acosB=3b﹣2bcosA.

(1)求 的值;
(2)設(shè)AB的中垂線交BC于D,若cos∠ADC= ,b=2,求△ABC的面積.

查看答案和解析>>

同步練習冊答案