數(shù)列{an}中,an=
n-4
6
n-
98
(n∈N),那么數(shù)列{an}前20項中最大項和最小項分別是( 。
A、a1,a20
B、a1,a9
C、a10,a9
D、a9,a10
考點:數(shù)列的函數(shù)特性
專題:等差數(shù)列與等比數(shù)列
分析:an=
n-4
6
n-
98
=
n-
98
+
98
-
96
n-
98
=1+
98
-
96
n-
98
.當n≤9時,數(shù)列{an}單調(diào)遞減;當n≥10時,數(shù)列{an}單調(diào)遞減.即可得出.
解答: 解:an=
n-4
6
n-
98
=
n-
98
+
98
-
96
n-
98
=1+
98
-
96
n-
98

當n≤9時,數(shù)列{an}單調(diào)遞減;當n≥10時,數(shù)列{an}單調(diào)遞減.
∴數(shù)列{an}前20項中最大項和最小項分別是a10,a9
故選:C.
點評:本題考查了數(shù)列的單調(diào)性,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=2cos(2x+
π
3
)+4
3
sinxcosx+1.
(Ⅰ)若f(x)的定義域為[
π
12
,
π
2
]
,求f(x)的值域;
(Ⅱ)在△ABC中,a,b,c分別是A,B,C所對邊,當f(A)=2,b+c=2時,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,CA⊥x軸于點A(1,0),DB⊥x軸于點B(3,0),直線CD與x軸、y軸分別交于點F、E,S四邊形ABCD=4.
(1)若直線CD的解析式為y=kx+3,求k的值;
(2)在(1)條件下,試探索在x軸正半軸上存在幾個點P,使△EPF為等腰三角形,并求出這些點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)是偶函數(shù),當x≥0時,f(x)=2x-4,則不等式f(x-2)>0的解集為( 。
A、{x|x<-2或x>4}
B、{x|x<0或x>4}
C、{x|x<0或x>6}
D、{x|x<-2或x>2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某集團為了獲得更大的利潤,每年要投入一定的資金用于廣告促銷.經(jīng)調(diào)查,每年投入廣告費t(100萬元)可增加銷售額約為-t2+5t(100萬元)(0≤t≤3).
(1)若該集團將當年的廣告費控制在300萬元以內(nèi),則應投入多少廣告費,才能使集團由廣告費而產(chǎn)生的收益最大?
(2)現(xiàn)在該集團準備投入300萬元,分別用于廣告促銷和技術改造.經(jīng)預算,每投入技術改造費x(100萬元),可增加的銷售額約為-
1
3
x3+x2+3x(100萬元).請設計一個資金分配方案,使該集團由這兩項共同產(chǎn)生的收益最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ),(A,ω,φ是常數(shù),A>0,ω>0)的部分圖象如圖所示,則f(0)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設[x]為表示不超過x的最大整數(shù),則函數(shù)y=lg[x]的定義域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-2x|x-a|,a∈R.
(1)當a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[0,2]上的最小值是-1,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合A={0,2,a},B={1,a2},若A∪B={-4,0,1,2,16},則a的值為(  )
A、1B、2C、-4D、4

查看答案和解析>>

同步練習冊答案