【題目】如圖1 ,在△ABC中,AB=BC=2, ∠B=90°,D為BC邊上一點,以邊AC為對角線做平行四邊形ADCE,沿AC將△ACE折起,使得平面ACE ⊥平面ABC,如圖2.
(1)在圖 2中,設(shè)M為AC的中點,求證:BM丄AE;
(2)在圖2中,當DE最小時,求二面角A -DE-C的平面角.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)根據(jù)題設(shè)條件推出,再由平面平面推出平面,即可得證;(2)分別以射線, 的方向為, 軸的正方向,建立空間直角坐標系,求出當最小時,點和的坐標,分別求出平面和平面的法向量,代入向量夾角公式,可得二面角的平面角.
試題解析:(1)證明:∵在中, ,
∴當為的中點時,
∵平面平面, 平面,平面平面
∴平面
∵平面
∴
(2)如圖,分別以射線, 的方向為, 軸的正方向,建立空間直角坐標系
設(shè),則, , ,
∵, ,平面平面
∴
∴
當且僅當時, 最小,此時,
設(shè), 平面,則,即
∴
令,可得, ,則有
∴
∴觀察可得二面角的平面角
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在原點,焦點在軸上,離心率為的橢圓過點.
(1)求橢圓的方程;
(2)設(shè)橢圓與軸的非負半軸交于點,過點作互相垂直的兩條直線,分別交橢圓于兩點,連接,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;(Ⅱ)若c=,△ABC的面積為,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校藝術(shù)節(jié)對同一類的四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預(yù)測如下:
甲說:“或作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“, 兩項作品未獲得一等獎”;
丁說:“作品獲得一等獎”.
若這四位同學只有兩位說的話是對的,則獲得一等獎的作品是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)滿足以下兩個條件的有窮數(shù)列, , , 為階“期待數(shù)列”:
①;
②.
()分別寫出一個單調(diào)遞增的階和階“期待數(shù)列”.
()若某階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項公式.
()記階“期待數(shù)列”的前項和為,試證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax+ln x,其中a為常數(shù).
(1)當a=-1時,求f(x)的單調(diào)遞增區(qū)間.
(2)當0<-<e時,若f(x)在區(qū)間(0,e)上的最大值為-3,求a的值.
(3)當a=-1時,試推斷方程|f(x)|=是否有實數(shù)根.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+b圖象上的點P(2,1)關(guān)于直線y=x的對稱點Q在函數(shù)g(x)=lnx+a上.
(Ⅰ)求函數(shù)h(x)=g(x)-f(x)的最大值;
(Ⅱ)對任意x1∈[1,e],x2∈,是否存在實數(shù)k,使得不等式成立,若存在,請求出實數(shù)k的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
已知△ABC中,角A,B,C所對的邊分別為a,b,c,且3a2+ab-2b2=0.
(Ⅰ)若B=,求sinC的值;
(Ⅱ)若sin A+3sin C=3sin B,求sinC的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com