|
1 |
2a |
1 |
4a |
1 |
2a |
1 |
2a |
1 |
2 |
1 |
2 |
1 |
2a |
1 |
4 |
1 |
2 |
1 |
2a |
1 |
4a |
1 |
4a |
2-
| ||
4 |
2+
| ||
4 |
1 |
4 |
1 |
2 |
1 |
2a |
1 |
4 |
1 |
4 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
x |
f(x2)-f(x1) |
x2-x1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
x |
f(x2)-f(x1) |
x2-x1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省云浮市高一(上)12月月考數(shù)學(xué)試卷(解析版) 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省豫東、豫北十所名校高三測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx +b,使得對(duì)公共定義域內(nèi)的任意實(shí)數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號(hào)在公共點(diǎn)處成立,則稱直線y=kx +b為曲線f(x)與g(x)的“左同旁切線”.已知
(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設(shè)P(是函數(shù) f(x)圖象上任意兩點(diǎn),且0<x1<x2,若存在實(shí)數(shù)x3>0,使得.請(qǐng)結(jié)合(I)中的結(jié)論證明:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com