在平面直角坐標(biāo)系xOy中,圓x2+y2=4上到直線12x-5y+12=0的距離為1的點的個數(shù)為________.

4
分析:根據(jù)題意畫出圖形,由圓的方程找出圓心坐標(biāo)和半徑r,利用點到直線的距離公式求出圓心到已知直線的距離|OA|,由半徑r-|OA|求出|AB|的長,判斷其長度小于1,從而得到該圓上到直線12x+5y+12=0的距離為1的點的個數(shù)即可.
解答:解:根據(jù)題意畫出圖形,如圖所示:
由圓的方程x2+y2=4,得到圓心坐標(biāo)為(0,0),半徑r=2,
∴圓心到直線x+y-2=0的距離d=|OA|==<1,
∴r->1,則圓上到直線12x+5y+12=0的距離為1的點的個數(shù)為是4.
故答案為:4.
點評:此題考查了圓的標(biāo)準(zhǔn)方程,點到直線的距離公式,利用了數(shù)形結(jié)合的思想,其中根據(jù)題意得出|AB|的長度小于1是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,雙曲線中心在原點,焦點在y軸上,一條漸近線方程為x-2y=0,則它的離心率為( 。
A、
5
B、
5
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為
x=2t-1 
y=4-2t .
(參數(shù)t∈R),以直角坐標(biāo)原點為極點,x軸的正半軸為極軸建立相應(yīng)的極坐標(biāo)系.在此極坐標(biāo)系中,若圓C的極坐標(biāo)方程為ρ=4cosθ,則圓心C到直線l的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程) 在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為
x=2cosθ
y=2sinθ+2
 (參數(shù)θ∈[0,2π)),若以原點為極點,射線ox為極軸建立極坐標(biāo)系,則圓C的圓心的極坐標(biāo)為
 
,圓C的極坐標(biāo)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣東)在平面直角坐標(biāo)系xOy中,直線3x+4y-5=0與圓x2+y2=4相交于A、B兩點,則弦AB的長等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.
(Ⅰ)若點A的橫坐標(biāo)是
3
5
,點B的縱坐標(biāo)是
12
13
,求sin(α+β)的值;
(Ⅱ) 若|AB|=
3
2
,求
OA
OB
的值.

查看答案和解析>>

同步練習(xí)冊答案