已知是橢圓的左、右焦點(diǎn),是橢圓上位于第一象限內(nèi)的一點(diǎn),點(diǎn)也在橢圓上,且滿足為坐標(biāo)原點(diǎn)),.若橢圓的離心率等于
(1)求直線的方程;
(2)若三角形的面積等于,求橢圓的方程.
(1)直線的方程為
(2)橢圓方程為
(1)由知,直線經(jīng)過原點(diǎn),
又由
因?yàn)闄E圓離心率等于,所以,
故橢圓方程可以寫為
設(shè),代入方程得,
所以,故直線的斜率等于,因此直線的方程為
(2)連接,由橢圓的對稱性可知,
所以
解得
故橢圓方程為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓C:(x+1)2+y2=25及點(diǎn)A(1,0),Q為圓上一點(diǎn),AQ的垂直平分線交CQ于M,則點(diǎn)M的軌跡方程為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)P為橢圓+=1上的點(diǎn),F是其右焦點(diǎn),則|PF|的最小值是(   )
A.1B.2C.3D.4-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題








(Ⅰ)求橢圓C的方程;
(Ⅱ)求證:當(dāng)時(shí),;
(Ⅲ)當(dāng)兩點(diǎn)在上運(yùn)動,且 =6時(shí), 求直線MN的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)已知橢圓的離心率為,點(diǎn)是橢圓上一定點(diǎn),若斜率為的直線與橢圓交于不同的兩點(diǎn)、.
(I)求橢圓方程;(II)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的方程為 , 線段  是過左焦點(diǎn)  且不與  軸垂直的焦點(diǎn)弦. 若在左準(zhǔn)線上存在點(diǎn) , 使  為正三角形, 求橢圓的離心率  的取值范圍, 并用  表示直線  的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

根據(jù)下列條件求橢圓的標(biāo)準(zhǔn)方程:
(1)已知P點(diǎn)在以坐標(biāo)軸為對稱軸的橢圓上,點(diǎn)P到兩焦點(diǎn)的距離分別為,過P作長軸的垂線恰好過橢圓的一個焦點(diǎn);
(2)經(jīng)過兩點(diǎn)A(0,2)和B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,點(diǎn)滿足:,則(   ).
A.B.C.D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,則的大小關(guān)系為__________________。

查看答案和解析>>

同步練習(xí)冊答案