1.對(duì)終端框敘述正確的是( 。
A.表示一個(gè)算法的起始和結(jié)束,程序框是
B.表示一個(gè)算法輸入和輸出的信息,程序框是
C.表示一個(gè)算法的起始和結(jié)束,程序框是
D.表示一個(gè)算法輸入和輸出的信息,程序框是

分析 根據(jù)程序框圖中的意義進(jìn)行判斷即可.

解答 解:終端框表示一個(gè)算法的起始和結(jié)束,
程序框是,
故選:C.

點(diǎn)評(píng) 本題主要考查程序框的判斷,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)數(shù)列{an}是公差大于0的等差數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,已知S3=9,且2a1,a3-1,a4+1構(gòu)成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足$\frac{{a}_{n}}{_{n}}$=2n-1(n∈N*),設(shè)Tn是數(shù)列{bn}的前n項(xiàng)和,證明:Tn<6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)$f(x)=asinxcosx-{sin^2}x+\frac{1}{2}$的一條對(duì)稱軸方程為$x=\frac{π}{6}$,則實(shí)數(shù)a=$\sqrt{3}$;函數(shù)f(x)的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某校A,B,C,D四門課外選修課的學(xué)生人數(shù)如下表,現(xiàn)用分層抽樣的方法從中選取15人參加學(xué)校的座談會(huì).
選修課學(xué)生人數(shù)
A20
B30
C40
D60
(1)應(yīng)分別從A,B,C,D四門課中各抽取多少名學(xué)生;
(2)從抽取的15名學(xué)生中再隨機(jī)抽取2人,求這2人的選修課恰好不同的概率;
(3)若從C,D兩門課中抽取的學(xué)生中再隨機(jī)抽取3人,用X表示其中選修C的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列關(guān)系中正確的是( 。
A.$\sqrt{2}$∈QB.|-3|∉ZC.$\sqrt{4}$∈ND.π∉R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=lnx-x2+ax,
(1)當(dāng)x∈(1,+∞)時(shí),函數(shù)f(x)為遞減函數(shù),求a的取值范圍;
(2)設(shè)f'(x)是函數(shù)f(x)的導(dǎo)函數(shù),x1,x2是函數(shù)f(x)的兩個(gè)零點(diǎn),且x1<x2,求證$f'({\frac{{{x_1}+{x_2}}}{2}})<0$
(3)證明當(dāng)n≥2時(shí),$\frac{1}{ln2}+\frac{1}{ln3}+\frac{1}{ln4}+…+\frac{1}{lnn}>1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)函數(shù)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x+2x+b(b為常數(shù)),則f(-1)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.一個(gè)容量為20的樣本數(shù)椐,分組后,組距與頻數(shù)如下:第1組:(10,20],2個(gè);第2組:(20,30],3個(gè);第3組:(30,40],4個(gè);第4組:(40,50],5個(gè);第5組:(50,60],4個(gè);第6組:(60,70],2個(gè).則樣本在區(qū)間[50,+∞)上的頻率為0.3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.(1)設(shè)函數(shù)$f(x)=\frac{1}{2}-\frac{1}{{{2^x}+1}}$,求證:函數(shù)f(x)在(-∞,+∞)上是增函數(shù);
(2)若f(x)=(log4x-3)•log44x>m在區(qū)間[1,2]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案