3.在公差不為0的等差數(shù)列{an}中,a3+a10=15,且a2,a5,a11成等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

分析 (1)設(shè)等差數(shù)列的公差為d,并由條件確定d的范圍,根據(jù)等差數(shù)列的通項(xiàng)公式及等比數(shù)列的性質(zhì)、以及題意列出關(guān)于首項(xiàng)和公差的方程組,求出公差和首項(xiàng)后代入等差數(shù)列的通項(xiàng)公式化簡(jiǎn)即可;
(2)把(1)求出的an代入bn,再求出bn的表達(dá)式,然后由裂項(xiàng)相消法來求數(shù)列{bn}的前n項(xiàng)和Sn

解答 解:(1)設(shè)正項(xiàng)等差數(shù)列{an}的公差為d,則d≠0,
由a3+a10=15,且a2,a5,a11成等比數(shù)列得,
$\left\{\begin{array}{l}{2{a}_{1}+11d=15①\\}\\{({a}_{1}+4d)^{2}=({a}_{1}+d)({a}_{1}+10d)②}\end{array}\right.$,
②化為6d2-3da1=0,
因?yàn)閐≠0,
所以a1=2d,代入①解得,
d=1,則a1=2,
所以,an=a1+(n-1)•d=n+1;
(2)由(1)知,an=n+1,則
bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,
所以Sn=$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{4}$-$\frac{1}{5}$+…+$\frac{1}{n+1}$-$\frac{1}{n+2}$=$\frac{1}{2}$-$\frac{1}{n+2}$=$\frac{n}{2(n+2)}$,
即Sn=$\frac{n}{2(n+2)}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及等比數(shù)列的性質(zhì),此題的關(guān)鍵是根據(jù)條件和公式列出方程組,考查了基礎(chǔ)知識(shí)和運(yùn)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知△ABC中,AB=AC,D為△ABC外接圓劣弧$\widehat{AC}$上的點(diǎn)(不與點(diǎn)A、C重合),延長(zhǎng)AD交BC的延長(zhǎng)線于F.
(Ⅰ)求證:∠CDF=∠ADB;
(Ⅱ)求證:AB•AC•DF=AD•FC•FB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若m是2和8的等比中項(xiàng),且m<0,則圓錐曲線x2+$\frac{{y}^{2}}{m}$=1的離心率是( 。
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{5}$C.$\frac{\sqrt{3}}{2}$ 或  $\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{3}}{2}$或$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.定義在R上的函數(shù)f(x)滿足:①f(0)=0,②f(x)+f(1-x)=1,③f($\frac{x}{3}$)=$\frac{1}{2}$f(x)且當(dāng)0≤x1<x2≤1時(shí),f(x1)≤f(x2),則f($\frac{1}{3}$)+f($\frac{1}{8}$)等于(  )
A.1B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若sinα+cosα=$\frac{{2\sqrt{6}}}{5}$,則α在( 。
A.第一象限B.第一、二象限C.第二象限D.第二、四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知i是虛數(shù)單位,若復(fù)數(shù)z=(2-i)(2+ai)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第四象限內(nèi),則實(shí)數(shù)a的值可以是(  )
A.-2B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,在直三棱柱ABC-A1B1C1中,D點(diǎn)為棱AB的中點(diǎn).
(1)求證:AC1∥平面B1CD;
(2)若AB=AC=2,BC=BB1=2$\sqrt{2}$,求二面角B1-CD-B的余弦值;
(3)若AC1,BA1,CB1兩兩垂直,求證:此三棱柱為正三棱柱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知三角形的三個(gè)頂點(diǎn)A(-5,0),B(3,-3),C(0,2),
(1)、求BC邊上中線所在直線的方程;
(2)、已知B、C到直線ax+y+1=0的距離相等,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=|x-x${\;}^{\frac{1}{3}}$|的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案