已知頂點(diǎn)為原點(diǎn)的拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,在第一和第四象限的交點(diǎn)分別為.
(1)若△AOB是邊長(zhǎng)為的正三角形,求拋物線的方程;
(2)若,求橢圓的離心率;
(3)點(diǎn)為橢圓上的任一點(diǎn),若直線、分別與軸交于點(diǎn),證明:

(1);(2);(3)證明過程詳見試題解析.

解析試題分析:(1)由△AOB是邊長(zhǎng)為的正三角形得到,代入拋物線方程中,可以得到所求拋物線方程為;(2)由可知點(diǎn)的橫坐標(biāo)是,因此可結(jié)合建立關(guān)于的方程為:,解出;(3)利用設(shè)而不求的思想,可先設(shè)三點(diǎn)后代入橢圓方程中,由于的方程為,求出,,那么化簡(jiǎn)后得到:.
試題解析:(1)設(shè)橢圓的右焦點(diǎn)為,依題意得拋物線的方程為 
∵△是邊長(zhǎng)為的正三角形,
∴點(diǎn)A的坐標(biāo)是,
代入拋物線的方程解得,
故所求拋物線的方程為
(2)∵, ∴ 點(diǎn)的橫坐標(biāo)是
代入橢圓方程解得,即點(diǎn)的坐標(biāo)是 
∵ 點(diǎn)在拋物線上,
, 
代入上式整理得:,
,解得   
,故所求橢圓的離心率.
(3)證明:設(shè),代入橢圓方程得

而直線的方程為 
.
中,以代換 
 .
考點(diǎn):圓錐曲線;直線與圓錐曲線的位置關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的對(duì)稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為,且||=2,
點(diǎn)(1,)在該橢圓上.
(1)求橢圓C的方程;
(2)過的直線與橢圓C相交于A,B兩點(diǎn),若AB的面積為,求以為圓心且與直線相切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的三個(gè)頂點(diǎn)都在拋物線上,且拋物線的焦點(diǎn)滿足,若邊上的中線所在直線的方程為為常數(shù)且).
(1)求的值;
(2)為拋物線的頂點(diǎn),,的面積分別記為,,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C=1(ab>0)的離心率為,其左、右焦點(diǎn)分別是F1、F2,過點(diǎn)F1的直線l交橢圓CE、G兩點(diǎn),且△EGF2的周長(zhǎng)為4.
(1)求橢圓C的方程;
(2)若過點(diǎn)M(2,0)的直線與橢圓C相交于兩點(diǎn)A、B,設(shè)P為橢圓上一點(diǎn),且滿足t (O為坐標(biāo)原點(diǎn)),當(dāng)||<時(shí),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知?jiǎng)訄A過定點(diǎn)(1,0),且與直線相切.
(1)求動(dòng)圓圓心的軌跡方程;
(2)設(shè)是軌跡上異于原點(diǎn)的兩個(gè)不同點(diǎn),直線的傾斜角分別為,①當(dāng)時(shí),求證直線恒過一定點(diǎn)
②若為定值,直線是否仍恒過一定點(diǎn),若存在,試求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且截拋物線的準(zhǔn)線所得弦長(zhǎng)為,傾斜角為的直線過點(diǎn).
(1)求該橢圓的方程;
(2)設(shè)橢圓的另一個(gè)焦點(diǎn)為,問拋物線上是否存在一點(diǎn),使得關(guān)于直線對(duì)稱,若存在,求出點(diǎn)的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直角坐標(biāo)系中,已知△PAB的周長(zhǎng)為8,且點(diǎn)A,B的坐標(biāo)分別為(-1,0),(1,0).

(1)試求頂點(diǎn)P的軌跡C1的方程;
(2)若動(dòng)點(diǎn)C(x1,y1)在軌跡C1上,試求動(dòng)點(diǎn)Q的軌跡C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知過點(diǎn)的直線交橢圓兩點(diǎn),是橢圓的一個(gè)頂點(diǎn),若線段的中點(diǎn)恰為點(diǎn).
(1)求直線的方程;
(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,F是拋物線Cx2=2py(p>0)的焦點(diǎn),M是拋物線C上位于第一象限內(nèi)的任意一點(diǎn),過M,F,O三點(diǎn)的圓的圓心為Q,點(diǎn)Q到拋物線C的準(zhǔn)線的距離為.
(1)求拋物線C的方程.
(2)是否存在點(diǎn)M,使得直線MQ與拋物線C相切于點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案