f(x)是一次函數(shù),滿足2f(x+1)=2x+16,則f(x)=
 
分析:設(shè)f(x)=kx+b則可得,2f(2x+1)=2[k(2x+1)+b]=4kx+b+2=2x+16,從而可求k,b的值,進(jìn)而可求函數(shù)的解析式
解答:解:設(shè)f(x)=kx+b
則2f(2x+1)=2[k(2x+1)+b]=4kx+b+2=2x+16
∴4k=2,b+2=16,k=
1
2
 ,b=14

f(x)=
1
2
x+14

故答案為:
1
2
x+14
點(diǎn)評:本題主要考查了利用待定系數(shù)法求解函數(shù)的解析式,屬于基本方法的簡單應(yīng)用,屬于基礎(chǔ)試題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知函數(shù)f(x)是一次函數(shù),若3f(x+1)-2f(x-1)=2x+17,求函數(shù)f(x)的解析式
(2)求函數(shù)f(x)=x-3
x-1
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知f(x)是一次函數(shù),且f(f(x))=4x+3,求f(x)的解析式;
(2)已知f(
x
+1)=x+2
x
,求f(x);
(3)已知f(x)滿足2f(x)+f(
1
x
)
=3x,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是一次函數(shù),f(0)、f(3)、f(24)成等比數(shù)列,且f(0)>0,函數(shù)f(x)的圖象與二次函數(shù)y=x2+6的圖象有且只有一個(gè)公共點(diǎn).
(Ⅰ)求f(x)的解析式:
(Ⅱ)設(shè)g(x)=mx2+4mx-f(x),若g(x)在區(qū)間[1,4]上是減函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是一次函數(shù),且2f(2)-3f(1)=5,2f(0)-f(-1)=1,則f(1)=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是一次函數(shù),f(10)=21,且f(2),f(7),f(22)成等比數(shù)列,則f(1)+f(2)+…+f(n)等于
n2+2n
n2+2n

查看答案和解析>>

同步練習(xí)冊答案