在數(shù)列中,已知,.
(1)求、并判斷能否為等差或等比數(shù)列;
(2)令,求證:為等比數(shù)列;
(3)求數(shù)列的前n項(xiàng)和.
(1)既不是等差數(shù)列也不是等比數(shù)列;(2)詳見試題解析;(3).
解析試題分析:(1)分別令可得由等差數(shù)列及等比數(shù)列定義可得不是等差數(shù)列也不是等比數(shù)列;(2)詳見試題解析;(3)在(2)的基礎(chǔ)上先求,在求得數(shù)列的前項(xiàng)和的表達(dá)式,最后根據(jù)的表達(dá)式的結(jié)構(gòu)特征利用錯位相減法求.
試題解析:(1)解:分別令得不是等差數(shù)列也不是等比數(shù)列. 4分
(2)是等比數(shù)列. 8分
(3)由(2)知:.
令,則
,兩式相減得
. 13分
考點(diǎn):1、數(shù)列通項(xiàng)公式的求法;2、數(shù)列前項(xiàng)和的求法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列{}的前n項(xiàng)和為,.
(Ⅰ)設(shè),證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和;
(Ⅲ)若,.求不超過的最大整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和是,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求適合方程 的正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè),將函數(shù)在區(qū)間內(nèi)的全部極值點(diǎn)按從小到大的順序排成數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和為,數(shù)列是公比為的等比數(shù)列, 是和的等比中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前項(xiàng)和為,.
(Ⅰ)設(shè),證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)
(Ⅰ)求不等式的解集;
(Ⅱ)若,記為數(shù)列的前項(xiàng)和,且,),點(diǎn)在函數(shù)的圖像上,求的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列是等差數(shù)列,且,.
⑴ 求數(shù)列的通項(xiàng)公式;
⑵ 令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的首項(xiàng)為,其前項(xiàng)和為,且對任意正整數(shù)有:、、成等差數(shù)列.
(1)求證:數(shù)列成等比數(shù)列;
(2)求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com