據(jù)民生所望,相關(guān)部門對所屬服務(wù)單位進行整治行核查,規(guī)定:從甲類3個指標項中隨機抽取2項,從乙類2個指標項中隨機抽取1項.在所抽查的3個指標項中,3項都優(yōu)秀的獎勵10萬元;只有甲類2項優(yōu)秀的獎勵6萬元;甲類只有1項優(yōu)秀、乙類1項優(yōu)秀的提出警告,有2項或2項以上不優(yōu)秀的停業(yè)運營并罰款8萬元.已知某家服務(wù)單位甲類3項指標項中有2項優(yōu)秀,乙類2項指標項中有1項優(yōu)秀.
求:(1)這家單位受到獎勵的概率;
(2)這家單位這次整治性核查中所獲金額的均值(獎勵為正數(shù),罰款為負數(shù)).

(1);(2)均值為0元.

解析試題分析:本題主要考查古典概型的概率和均值等基礎(chǔ)知識,考查綜合分析問題解決問題的能力,考查運用概率知識解決簡單實際問題的能力,考查計算能力.第一問,由題意分析可知,受到獎勵的有10萬元和6萬元2種情況,即所抽查的3個指標項都優(yōu)秀和只有甲類2項優(yōu)秀的情況,先把甲和乙中的指標項設(shè)出字母,把取3項的所有情況全部列出來共6種情況,在這6種情況中選出上述符合題意的情況,寫出概率值;第二問,分別求出10萬元,6萬元,0萬元,-8萬元的情況種數(shù),求出均值.
試題解析:記這家單位甲類優(yōu)秀的指標項為,甲類非優(yōu)秀的指標項為;乙類優(yōu)秀的指標項為,乙類非優(yōu)秀的指標項為.依題意,被抽取的指標項的可能結(jié)果有:
,,,,共6種.
(Ⅰ)記這家公司“獲得10萬元獎勵”為事件,“獲得6萬元獎勵”為事件,則
,.           7分
記這家公司“獲獎”為事件C,則
(Ⅱ)這家單位這次整治性核查中所獲金額的均值為
(萬元).
考點:1.古典概型;2.均值的計算.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

設(shè)袋子中裝有a個紅球,b個黃球,c個藍球,且規(guī)定:取出一個紅球得1分,取出一個黃球得2分,取出一個藍球得3分.
(1)當a=3,b=2,c=1時,從該袋子中任取(有放回,且每球取到的機會均等)2個球,記隨機變量ξ為取出此2球所得分數(shù)之和,求ξ的分布列;
(2)從該袋子中任取(每球取到的機會均等)1個球,記隨機變量η為取出此球所得分數(shù).若E(η)=,D(η)=,求abc.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某市四所中學報名參加某高校今年自主招生的學生人數(shù)如下表所示:

中學
 
 
 
 
人數(shù)
 
 
 
 
為了了解參加考試的學生的學習狀況,該高校采用分層抽樣的方法從報名參加考試的四所中學的學生當中隨機抽取50名參加問卷調(diào)查.
(1)問四所中學各抽取多少名學生?
(2)從參加問卷調(diào)查的名學生中隨機抽取兩名學生,求這兩名學生自同一所中學的概率;
(3)在參加問卷調(diào)查的名學生中,從自兩所中學的學生當中隨機抽取兩名學
生,用表示抽得中學的學生人數(shù),求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某中學經(jīng)市批準建設(shè)分校,工程從2010年底開工到2013年底完工,分三期完成,經(jīng)過初步招標淘汰后,確定由甲、乙兩建筑公司承建,且每期工程由兩公司之一獨立完成,必須在建完前一期工程后再建后一期工程,已知甲公司獲得第一期,第二期,第三期工程承包權(quán)的概率分別是,,
(I)求甲乙兩公司均至少獲得l期工程的概率;
(II)求甲公司獲得的工程期數(shù)的分布列和數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某高中為了推進新課程改革,滿足不同層次學生的需求,決定從高一年級開始,在每周的周一、周三、周五的課外活動期間同時開設(shè)數(shù)學、物理、化學、生物和信息技術(shù)輔導講座,每位有興趣的同學可以在期間的任何一天參加任何一門科目的輔導講座,也可以放棄任何一門科目的輔導講座。(規(guī)定:各科達到預先設(shè)定的人數(shù)時稱為滿座,否則稱為不滿座)統(tǒng)計數(shù)據(jù)表明,各學科講座各天的滿座的概率如下表:

根據(jù)上表:
(Ⅰ)求數(shù)學輔導講座在周一、周三、周五都不滿座的概率;
(Ⅱ)設(shè)周三各輔導講座滿座的科目數(shù)為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一中食堂有一個面食窗口,假設(shè)學生買飯所需的時間互相獨立,且都是整數(shù)分鐘,對以往學生買飯所需的時間統(tǒng)計結(jié)果如下:

買飯時間(分)
1
2
3
4
5
頻率
0.1
0.4
0.3
0.1
0.1
從第一個學生開始買飯時計時.
(Ⅰ)估計第三個學生恰好等待4分鐘開始買飯的概率;
(Ⅱ)表示至第2分鐘末已買完飯的人數(shù),求的分布列及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲乙兩人拿兩顆骰子做投擲游戲,規(guī)則如下:若擲出的點數(shù)之和為3的倍數(shù),原擲骰子的人再繼續(xù)擲,否則,由對方接著擲。第一次由甲開始擲。
(1)分別求第二次、第三次由甲擲的概率;
(2)求前4次拋擲中甲恰好擲兩次的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在某校高三學生的數(shù)學校本課程選課過程中,規(guī)定每位同學只能選一個科目.已知某班第一小組與第二小組各有六位同學選擇科目甲或科目乙,情況如下表:

 
科目甲
科目乙
總計
第一小組
1
5
6
第二小組
2
4
6
總計
3
9
12
現(xiàn)從第一小組、第二小組中各任選2人分析選課情況.
(1)求選出的4人均選科目乙的概率;
(2)設(shè)為選出的4個人中選科目甲的人數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在某次測驗中,有6位同學的平均成績?yōu)?5分.用xn表示編號為n(n=1,2,…,6)的同學所得成績,且前5位同學的成績?nèi)缦拢?,2,3,4,5

編號n
1
2
3
4
5
成績xn
70
76
72
70
72
(1)求第6位同學的成績x6,及這6位同學成績的標準差s;
(2)從前5位同學中,隨機地選2位同學,求恰有1位同學成績在區(qū)間(68,75)中的概率.
(注:方差s2 [(x1)2+(x2)2+…+(xn)2],其中為x1,x2,…,xn的平均數(shù))

查看答案和解析>>

同步練習冊答案