【題目】閱讀右面的程序框圖,運(yùn)行相應(yīng)的程序,若輸入N的值為24,則輸出N的值為( 。

A.0
B.1
C.2
D.3

【答案】C
【解析】解:第一次N=24,能被3整除,N= ≤3不成立,
第二次N=8,8不能被3整除,N=8﹣1=7,N=7≤3不成立,
第三次N=7,不能被3整除,N=7﹣1=6,N= =2≤3成立,
輸出N=2,
故選:C
【考點(diǎn)精析】利用算法的條件結(jié)構(gòu)和算法的循環(huán)結(jié)構(gòu)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知條件P是否成立而選擇執(zhí)行A框或B框.無論P(yáng)條件是否成立,只能執(zhí)行A框或B框之一,不可能同時(shí)執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行.一個(gè)判斷結(jié)構(gòu)可以有多個(gè)判斷框;在一些算法中,經(jīng)常會(huì)出現(xiàn)從某處開始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類:當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某項(xiàng)娛樂活動(dòng)的海選過程中評(píng)分人員需對(duì)同批次的選手進(jìn)行考核并評(píng)分,并將其得分作為該選手的成績(jī),成績(jī)大于等于60分的選手定為合格選手,直接參加第二輪比賽,不超過40分的選手將直接被淘汰,成績(jī)?cè)?/span>內(nèi)的選手可以參加復(fù)活賽,如果通過,也可以參加第二輪比賽.

(1)已知成績(jī)合格的200名參賽選手成績(jī)的頻率分布直方圖如圖,求a的值及估計(jì)這200名參賽選手的成績(jī)平均數(shù);

(2)根據(jù)已有的經(jīng)驗(yàn),參加復(fù)活賽的選手能夠進(jìn)入第二輪比賽的概率為,假設(shè)每名選手能否通過復(fù)活賽相互獨(dú)立,現(xiàn)有3名選手進(jìn)入復(fù)活賽,記這3名選手在復(fù)活賽中通過的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=xln(ax)(a>0)
(1)設(shè)F(x)= 2+f'(x),討論函數(shù)F(x)的單調(diào)性;
(2)過兩點(diǎn)A(x1 , f′(x1)),B(x2f′(x2))(x1<x2)的直線的斜率為k,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)f(x)在R上為增函數(shù),且f(1)= ,若實(shí)數(shù)a滿足f(loga3)﹣f(loga )≤1,則實(shí)數(shù)a的取值范圍為(
A.0<a≤
B.a≤
C. ≤a<1
D.a≥3或0<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,動(dòng)圓經(jīng)過點(diǎn)M(a﹣2,0),N(a+2,0),P(0,﹣2),其中a∈R.
(1)求動(dòng)圓圓心的軌跡E的方程;
(2)過點(diǎn)P作直線l交軌跡E于不同的兩點(diǎn)A、B,直線OA與直線OB分別交直線y=2于兩點(diǎn)C、D,記△ACD與△BCD的面積分別為S1 , S2 . 求S1+S2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓的圓心在軸上,并且過兩點(diǎn).

(1)求圓的方程;

(2)設(shè)直線與圓交于兩點(diǎn),那么以為直徑的圓能否經(jīng)過原點(diǎn),若能,請(qǐng)求出直線的方程;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從甲地到乙地要經(jīng)過3個(gè)十字路口,設(shè)各路口信號(hào)燈工作相互獨(dú)立,且在各路口遇到紅燈的概率分別為 , ,
(Ⅰ)設(shè)X表示一輛車從甲地到乙地遇到紅燈的個(gè)數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(Ⅱ)若有2輛車獨(dú)立地從甲地到乙地,求這2輛車共遇到1個(gè)紅燈的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA底面ABC,ABC是直角三角形,且PA=AB=AC.又平面QBC垂直于底面ABC.

(1)求證:PA平面QBC;

(2)若PQ平面QBC,求銳二面角Q-PB-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣ )e﹣x(x≥ ).
(Ⅰ)求f(x)的導(dǎo)函數(shù);
(Ⅱ)求f(x)在區(qū)間[ ,+∞)上的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案