橢圓關(guān)于________和________都是對稱的,原點(diǎn)叫做橢圓的________.

答案:
解析:

坐標(biāo)軸,原點(diǎn),中點(diǎn)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1
的左、右兩個(gè)焦點(diǎn).
(1)若橢圓C上的點(diǎn)A(1,
3
2
)到F1、F2兩點(diǎn)的距離之和等于4,寫出橢圓C的方程和焦點(diǎn)坐標(biāo).
(2)已知圓心在原點(diǎn)的圓具有性質(zhì):若M、N是圓上關(guān)于原點(diǎn)對稱的兩點(diǎn),點(diǎn)P是圓上的任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記作KPM、KPN那么KPMKPN=-1.試對橢圓
x2
a2
+
y2
b2
=1
寫出類似的性質(zhì),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•南寧二模)設(shè)F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個(gè)焦點(diǎn).
(Ⅰ)若橢圓C上的點(diǎn)A(1,
3
2
)到F1、F2兩點(diǎn)的距離之和等于4,寫出橢圓C的方程和焦點(diǎn)坐標(biāo);
(Ⅱ)設(shè)點(diǎn)P是(Ⅰ)中所得橢圓上的動(dòng)點(diǎn),Q(0,
1
2
),求|PQ|的最大值;
(Ⅲ)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對稱的兩個(gè)點(diǎn),點(diǎn)P在橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為KPM、KPN時(shí),那么KPM與KPN之積是與點(diǎn)P位置無關(guān)的定值.設(shè)對雙曲線
x2
a2
-
y2
b2
=1寫出具有類似特性的性質(zhì)(不必給出證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓具有性質(zhì):若A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0且a,b為常數(shù))上關(guān)于原點(diǎn)對稱的兩點(diǎn),點(diǎn)P是橢圓上的任意一點(diǎn),若直線PA和PB的斜率都存在,并分別記為kPA,kPB,那么kPA與kPB之積是與點(diǎn)P位置無關(guān)的定值-
b2
a2
.試對雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0且a,b為常數(shù))寫出類似的性質(zhì),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個(gè)焦點(diǎn).
(1)若橢圓C上的點(diǎn)A(1,
3
2
)到F1、F2兩點(diǎn)的距離之和等于4,寫出橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段F1K的中點(diǎn)的軌跡方程;
(3)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對稱的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN時(shí),那么kPM與kPN之積是與點(diǎn)P位置無關(guān)的定值.試對雙曲線
x2
a2
-
y2
b2
=1
寫出具有類似特性的性質(zhì),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•楊浦區(qū)二模)(文)設(shè)F1、F2分別為橢圓C:
x2
m2
+
y2
n2
=1
(m>0,n>0且m≠n)的兩個(gè)焦點(diǎn).
(1)若橢圓C上的點(diǎn)A(1,
3
2
)到兩個(gè)焦點(diǎn)的距離之和等于4,求橢圓C的方程.
(2)如果點(diǎn)P是(1)中所得橢圓上的任意一點(diǎn),且
PF1
PF2
=0
,求△PF1F2的面積.
(3)若橢圓C具有如下性質(zhì):設(shè)M、N是橢圓C上關(guān)于原點(diǎn)對稱的兩點(diǎn),點(diǎn)Q是橢圓上任意一點(diǎn),且直線QM與直線QN的斜率都存在,分別記為KQM、KQN,那么KQM和KQN之積是與點(diǎn)Q位置無關(guān)的定值.試問:雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)是否具有類似的性質(zhì)?并證明你的結(jié)論.通過對上面問題進(jìn)一步研究,請你概括具有上述性質(zhì)的二次曲線更為一般的結(jié)論,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案