【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點,x= 為y=f(x)圖象的對稱軸,且f(x)在( , )上單調,則ω的最大值為(
A.11
B.9
C.7
D.5

【答案】B
【解析】解:∵x=﹣ 為f(x)的零點,x= 為y=f(x)圖象的對稱軸, ∴ ,即 ,(n∈N)
即ω=2n+1,(n∈N)
即ω為正奇數(shù),
∵f(x)在( , )上單調,則 = ,
即T= ,解得:ω≤12,
當ω=11時,﹣ +φ=kπ,k∈Z,
∵|φ|≤ ,
∴φ=﹣
此時f(x)在( )不單調,不滿足題意;
當ω=9時,﹣ +φ=kπ,k∈Z,
∵|φ|≤
∴φ= ,
此時f(x)在( , )單調,滿足題意;
故ω的最大值為9,
故選:B
根據已知可得ω為正奇數(shù),且ω≤12,結合x=﹣ 為f(x)的零點,x= 為y=f(x)圖象的對稱軸,求出滿足條件的解析式,并結合f(x)在( , )上單調,可得ω的最大值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2cos( ﹣x)cos(x+ )+ . (Ⅰ)求函數(shù)f(x)的最小正周期和單調遞減區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0, ]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次購物抽獎活動中,假設某10張券中有一等獎券1張,可獲價值50元的獎品;有二等獎券3張,每張可獲價值10元的獎品;其余6張沒有獎,某顧客從此10張券中任抽2張,求:
(Ⅰ)該顧客中獎的概率;
(Ⅱ)該顧客獲得的獎品總價值ξ(元)的概率分布列和期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=mln(x+1),g(x)= (x>﹣1).
(Ⅰ)討論函數(shù)F(x)=f(x)﹣g(x)在(﹣1,+∞)上的單調性;
(Ⅱ)若y=f(x)與y=g(x)的圖象有且僅有一條公切線,試求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校后勤處為跟蹤調查該校餐廳的當月的服務質量,兌現(xiàn)獎懲,從就餐的學生中隨機抽出100位學生對餐廳服務質量打分(5分制),得到如圖柱狀圖.
(Ⅰ)從樣本中任意選取2名學生,求恰好有1名學生的打分不低于4分的概率;
(Ⅱ)若以這100人打分的頻率作為概率,在該校隨機選取2名學生進行打分(學生打分之間相互獨立)記X表示兩人打分之和,求X的分布列和E(X).
(Ⅲ)根據(Ⅱ)的計算結果,后勤處對餐廳服務質量情況定為三個等級,并制定了對餐廳相應的獎懲方案,如表所示,設當月獎金為Y(單位:元),求E(Y).

服務質量評分X

X≤5

6≤X≤8

X≥9

等級

不好

較好

優(yōu)良

獎懲標準(元)

﹣1000

2000

3000

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在直角坐標系xoy中,曲線C1的參數(shù)方程為 (β為參數(shù)).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=4cosθ.
(Ⅰ)將曲線C1的方程化為極坐標方程;
(Ⅱ)已知直線l的參數(shù)方程為 <α<π,t為參數(shù),t≠0),l與C1交與點A,l與C2交與點B,且|AB|= ,求α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cos(2x﹣ )+2cos2x,將函數(shù)y=f(x)的圖象向右平移 個單位,得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)圖象的一個對稱中心是(
A.(﹣ ,1)
B.(﹣ ,1)
C.( ,1)
D.( ,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1、F2為雙曲線的焦點,過F2垂直于實軸的直線交雙曲線于A、B兩點,BF1交y軸于點C,若AC⊥BF1 , 則雙曲線的離心率為(
A.
B.
C.2
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知a2﹣a﹣2b﹣2c=0且a+2b﹣2c+3=0.則△ABC中最大角的度數(shù)是

查看答案和解析>>

同步練習冊答案