若橢圓
x2
8-a
+
y2
9
=1
的焦距為2
3
,則a的值是
 
分析:當(dāng)焦點(diǎn)坐標(biāo)在x軸時(shí),c=
8-a-9
=3
,當(dāng)焦點(diǎn)坐標(biāo)在y軸時(shí),c=
9-8+a
=3
,由此能得到實(shí)數(shù)a的值.
解答:解:∵2c=2
3
,∴c=
3

當(dāng)焦點(diǎn)坐標(biāo)在x軸時(shí),
c=
8-a-9
=3
,
∴a=-4.
當(dāng)焦點(diǎn)坐標(biāo)在y軸時(shí),
c=
9-8+a
=3

∴a=2.
由此知,a=-4或2.
故答案為:-4或2.
點(diǎn)評:本題考查橢圓的性質(zhì)和應(yīng)用,解題時(shí)要注意公式的合理選用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過橢圓C:
x2
8
+
y2
4
=1上一點(diǎn)P(x0,y0)向圓O:x2+y2=4
引兩條切線PA、PB、A、B為切點(diǎn),如直線AB與x軸、y軸交于M、N兩點(diǎn).
(1)若
PA
PB
=0
,求P點(diǎn)坐標(biāo);
(2)求直線AB的方程(用x0,y0表示);
(3)求△MON面積的最小值.(O為原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C與橢圓
x2
8
+
y2
4
=1
有相同的焦點(diǎn),實(shí)半軸長為
3

(1)求雙曲線C的方程;
(2)若直線l:y=kx+
2
與雙曲線C有兩個(gè)不同的交點(diǎn)A和B,且
OA
OB
>2
(其中O為原點(diǎn)),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓M:
x2
8
+
y2
4
=1
和直線l1:y=
3
x
,若雙曲線N的一條漸近線為l1,其焦點(diǎn)與M的焦點(diǎn)相同.
(1)求雙曲線N的方程;
(2)設(shè)直線l2過點(diǎn)P(0,4),且與雙曲線N相交于A,B兩點(diǎn),與x軸交于點(diǎn)Q(Q與雙曲線N的頂點(diǎn)不重合),若
PQ
=λ1
QA
=λ2
QB
,且λ1+λ2=-
8
3
,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)如果兩個(gè)橢圓的離心率相等,那么就稱這兩個(gè)橢圓相似.已知橢圓C與橢圓Γ:
x2
8
+
y2
4
=1
相似,且橢圓C的一個(gè)短軸端點(diǎn)是拋物線y=
1
4
x2
的焦點(diǎn).
(Ⅰ)試求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)橢圓E的中心在原點(diǎn),對稱軸在坐標(biāo)軸上,直線l:y=kx+t(k≠0,t≠0)與橢圓C交于A,B兩點(diǎn),且與橢圓E交于H,K兩點(diǎn).若線段AB與線段HK的中點(diǎn)重合,試判斷橢圓C與橢圓E是否為相似橢圓?并證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線C與橢圓
x2
8
+
y2
4
=1
有相同的焦點(diǎn),實(shí)半軸長為
3

(1)求雙曲線C的方程;
(2)若直線l:y=kx+
2
與雙曲線C有兩個(gè)不同的交點(diǎn)A和B,且
OA
OB
>2
(其中O為原點(diǎn)),求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案