對于平面α和直線m,n,下列命題中假命題的個數(shù)是( )
①若m⊥α,m⊥n,則n∥α;
②若m∥α,n∥α,則m∥n;
③若m∥α,n?α,則m∥n;
④若m∥n,n∥α,則m∥α
A.1個
B.2個
C.3個
D.4個
【答案】分析:根據(jù)線面垂直的性質(zhì)與線面平行的判定,可得①是假命題;以正方體的上底面為α,可得下底面內(nèi)的直線m、n均與α平行,但不一定有m∥n,因此②是假命題;根據(jù)線面平行的性質(zhì),并以正方體下底面內(nèi)的直線m與上底面α平行為例,舉出反例可得③是假命題;根據(jù)線面平行的判定定理,可得④是假命題.
解答:解:對于①,因為m⊥α,m⊥n,則n∥α或n?α,
不一定得到n∥α,故①是假命題;
對于②,設正方體的上底面為α,則在下底面內(nèi)任意取兩條直線m、n,
有m∥α且n∥α,但不一定有m∥n成立,故②是假命題;
對于③,設正方體的上底面為α,在下底面內(nèi)任意取直線m,
則m∥α,而直線m與α內(nèi)的直線n可能平行,也可能是異面直線,
不一定有m∥n成立,故③是假命題;
對于④,若m∥n,n∥α,則m∥α或m?α,
不一定得到m∥α,故④是假命題
綜上所述,可得假命題有①②③④,共4個
故選:D
點評:本題給出空間線面平行的判定與性質(zhì)的幾個命題,叫我們找出其中的真命題.著重考查了線面平行判定定理、性質(zhì)定理,直線與平面垂直的性質(zhì)和命題真假的判斷等知識,屬于基礎題.