已知函數(shù)f(x)=x+b的圖象與函數(shù)g(x)=x2+3x+2的圖象相切,記F(x)=f(x)g(x).
(1)求實數(shù)b的值及函數(shù)F(x)的極值;
(2)若關(guān)于x的方程F(x)=k恰有三個不等的實數(shù)根,求實數(shù)k的取值范圍.
分析:(1)令f′(x)=g′(x),進而求得x,進而可知函數(shù)f(x)的圖象與函數(shù)g(x)的圖象的切點,把切點代入f(x)求得b,進而求得函數(shù)F(x)的解析式,進而對函數(shù)進行求導(dǎo),使其為0求得x,進而推斷出函數(shù)F(x)的極大值和極小值.
(2)首先根據(jù)(1)中函數(shù)F(x)的單調(diào)性畫出函數(shù)的草圖,作函數(shù)y=k的圖象,進而根據(jù)當y=F(x)的圖象與函數(shù)y=k的圖象有三個交點時,關(guān)于x的方程F(x)=k恰有三個不等的實數(shù)根.最后根據(jù)圖象確定k的范圍.
解答:解:(1)依題意,令f′(x)=g′(x),得1=2x+3,故x=-1
函數(shù)f(x)的圖象與函數(shù)g(x)的圖象的切點為(-1,0)
將切點坐標代入函數(shù)f(x)=x+b可得b=1
(或:依題意得f(x))=g(x),
即x
2+2x+2-b=0有唯一實數(shù)解
故△=2
2-4(2-b)=0,即b=1
∴F(x)=(x+1)(x
2+2x+2)=x
3+4x
2+5x+2
故F′(x)=0,解得x=-1或x=-
.
列表如下:
從上表可知
F(x)在x=-處取得極大值,在x=-1處取得極小值.
(2)由(1)可知涵數(shù)y=F(x)大致圖象如圖所示.
作函數(shù)y=k的圖象,當y=F(x)的圖象與函數(shù)y=k的圖象有三個交點時,
關(guān)于x的方程F(x)=k恰有三個不等的實數(shù)根.結(jié)合圖形可知
k∈(0,).
點評:本題主要考查了函數(shù)與方程的應(yīng)用,導(dǎo)函數(shù)求函數(shù)極值.考查了學(xué)生綜合分析問題和解決的能力.