已知{an}、{bn}為兩個(gè)數(shù)列,點(diǎn)M(1,2),An(2,an),為平面直角坐標(biāo)系上的點(diǎn).

(Ⅰ)對(duì)若點(diǎn)M、An、Bn在同一直線上,求數(shù)列{an}的通項(xiàng)公式;

(Ⅱ)若數(shù)列{bn}滿足求數(shù)列{bn}的前n項(xiàng)和.

答案:
解析:

  解:(Ⅰ)由題意知:,由斜率公式得;

  解得:.     4分;

  (Ⅱ)由題設(shè)知:,

  條件中的等式可化為:

  ,①

  有,②

  ①-②得     10分

  當(dāng)時(shí),

  ∴

  .     12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、已知{an},{bn}都是等比數(shù)列,那么( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}、{bn}都是等差數(shù)列,其前n項(xiàng)和分別為Sn、Tn,若
Sn
Tn
=
3n+19
n+1
,則使
an
bn
取得最小正整數(shù)的n的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an},{bn}為兩個(gè)數(shù)列,點(diǎn)M(1,2),An(2,an),Bn(
n-1
n
,
2
n
)
為坐標(biāo)平面上的點(diǎn).
(Ⅰ)對(duì)n∈N*,若點(diǎn)M、An、Bn在同一直線上,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足
a
 
1
b1+a2b2+…+anbn
a1+a2+…+an
=2n-3
,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an},{bn}都是等差數(shù)列,其前n項(xiàng)和分別是Sn,和Tn,若
Sn
Tn
=
n-6
2n-3
,則
a8
b8
的值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}、{bn}為兩個(gè)數(shù)列,其中{an}是等差數(shù)列,且a2=4,a8=16.
(1)求數(shù)列{an}的前n項(xiàng)和Sn;
(2)若數(shù)列{bn}滿足
a1b1+a2b2+…+anbn  a1+a2+…+an
=2n-3
,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案