6.已知角α和角β的終邊關(guān)于x軸對稱,且β=-$\frac{π}{3}$,則sin α=( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

分析 不妨取α∈[0,2π),則由角α和角β的終邊關(guān)于x軸對稱,且β=-$\frac{π}{3}$,可得α,由此求得sinα.

解答 解:不妨取α∈[0,2π),則由角α和角β的終邊關(guān)于x軸對稱,且β=-$\frac{π}{3}$,
可得α=$\frac{π}{3}$,sinα=$\frac{\sqrt{3}}{2}$.
故選B.

點評 本題主要考查終邊相同的角的定義和表示方法,三角函數(shù)值的求法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.圓x2+y2-2x+4y+4=0上的點到3x-4y+9=0的最大距離是5,最小距離是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.3B.4C.4.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在遞增等差數(shù)列{an}中,a4=2,且a2,a4,a8成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)從數(shù)列{an}中依次取出${a_1},{a_2},{a_4},{a_8},…,{a_{{2^{n-1}}}},…$,構(gòu)成一個新的數(shù)列{bn},令cn=n•bn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.復(fù)數(shù)z=$\frac{3+{i}^{3}}{1-i}$在復(fù)平面上對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)集合M={x|y=ln(x-1)},N={y|y=ex},則M∩N等于(  )
A.[1,+∞)B.MC.ND.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.一個長方體,過同一個頂點的三個面的面積分別是$\sqrt{6}$,$\sqrt{3}$,$\sqrt{2}$,則長方體的對角線長為(  )
A.$2\sqrt{3}$B.$3\sqrt{2}$C.6D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等差數(shù)列{an}前n項和為Sn,若a1+a3=7,a2+a4=11,則S12為(  )
A.150B.155C.160D.165

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx+$\frac{1}{4}$x2-$\frac{1}{2}$x
(1)判斷f(x)是否為定義域上的單調(diào)函數(shù),并說明理由
(2)設(shè)x∈(0,e],f(x)-mx≤0恒成立,求m的最小整數(shù)值.

查看答案和解析>>

同步練習(xí)冊答案