設x,y∈R,
i
,
j
是直角坐標平面內(nèi)x,y軸正方向上的單位向量,若
a
=x
i
+(y+3)
j
b
=x
i
+(y-3)
j
|
a
|+|
b
|=6
,則點M(x,y)的軌跡是( 。
分析:根據(jù)向量條件,可知(x,y)與定點(0,-3),(0,3)的距離和為6,等于兩定點間的距離,從而可得點M(x,y)的軌跡.
解答:解:由題意,∵
a
=x
i
+(y+3)
j
,
b
=x
i
+(y-3)
j
|
a
|+|
b
|=6
,
∴(x,y)與定點(0,-3),(0,3)的距離和為6,等于兩定點間的距離
∴點M(x,y)的軌跡是定點間的線段
故選C.
點評:本題考查向量知識的運用,考查點的軌跡,確定向量的意義是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設x,y∈R,i,j為直角坐標平面內(nèi)x,y軸正方向上的單位向量,若a=(x+1)i+yj,b=(x-1)i+yj,|a|+|b|=4.
(I)求點M(x,y)的軌跡C的方程;
(II)過點(0,m)作直線l與曲線C交于A,B兩點,若|
OA
+
OB
|=|
OA
-
OB
|,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y∈R,
i
,
j
為直角坐標平面內(nèi)x軸y軸正方向上的單位向量,若
a
=x
i
+(y+2)
j
,
b
=x
i
+(y-2)
j
,且|
a
|+|
b
|=8
(Ⅰ)求動點M(x,y)的軌跡C的方程;
(Ⅱ)設曲線C上兩點AB,滿足(1)直線AB過點(0,3),(2)若
OP
=
OA
+
OB
,則OAPB為矩形,試求AB方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y∈R,
i
、
j
,為直角坐標平面內(nèi)x軸,y軸正方向上的單位向量,若向量
a
=x
i
+(y+2)
j
,
b
=x
i
+(y-2)
j
,且|
a
|+|
b
|=8.
(1)求點M(x,y)的軌跡C的方程;
(2)過點(0,3)作直線l與曲線C交于A、B兩點.設
OP
=
OA
+
OB
,是否存在這樣的直線l,使得四邊形OAPB為菱形?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•西山區(qū)模擬)設x,y∈R,
i
,
j
為直角坐標平面內(nèi)x,y軸正方向上單位向量,若向量
a
=(x+
3
)
i
+y
j
b
=(x-
3
)
i
+y
j
,且|
a
|+|
b
|=2
6

(1)求點M(x,y)的軌跡C的方程;
(2)若直線L與曲線C交于A、B兩點,若
OA
OB
=0
,求證直線L與某個定圓E相切,并求出定圓E的方程.

查看答案和解析>>

同步練習冊答案