如圖,過拋物線x2=4y焦點F的直線l與拋物線交于A,B兩點(A在第一象限),點C(0,t)(t>1).
(I)若△CBF,△CFA,△CBA的面積成等差數(shù)列,求直線l的方程;
(II)若,且∠FAC為銳角,試求t的取值范圍.

【答案】分析:(I)設直線l的方程為y=kx+1,代入x2=4y,得x2-4kx-4=0,設A(x1,y1),B(x2,y2),則x1+x2=4k,x1x2=-4,由△CBF,△CFA,△CBA的面積成等差數(shù)列,得|FA|=2|BF|,由此能求出直線方程.
(Ⅱ)由拋物線x2=4y焦點F(0,1),知,若∠FAC為銳角,則,由|AB|∈(),知|AB|=y1+y2+2=kx1+1+kx2+1=4k2+4,由此能夠推導出t的取值范圍.
解答:解:(I)設直線l的方程為y=kx+1,
代入x2=4y,得x2-4kx-4=0,
設A(x1,y1),B(x2,y2),
則x1+x2=4k,x1x2=-4,①
∵△CBF,△CFA,△CBA的面積成等差數(shù)列,
即|BF|,|FA|,|BA|成等差數(shù)列,
∴|BF|+|BA|=2|FA|,
得|FA|=2|BF|,
即x1=-2x2,代入①得,
∴所求直線方程為,即
(Ⅱ)∵拋物線x2=4y焦點F(0,1),
,,
若∠FAC為銳角,則,
,
∵|AB|∈(),
|AB|=y1+y2+2=kx1+1+kx2+1=k(x1+x2)+2=4k2+4,
=,
從而|AB|=,

,當t>1時,∠FAC必為銳角;
若y1∈(2,7),則在(2,7)上恒成立.
由于g(y1)的對稱軸為,
故①當-,即1<t<7時,g(2)=10-t>0滿足題意;
②當2,即7≤t≤17時,△=(3-t)2-4t<0,
即t2-10t+9<0,解得1<t<9,∴7≤t<9;
③當-,即t>17時,g(7)=70-6t>0無解.
綜上所述,t的取值范圍是(1,9).
點評:本題考查直線方程的求法,求實數(shù)的取值范圍,考查運算求解能力,推理論證能力;考查化歸與轉化思想.綜合性強,難度大,有一定的探索性,對數(shù)學思維能力要求較高,是高考的重點.解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,過拋物線x2=4y的對稱軸上任一點P(0,m)(m>0)作直線與拋物線交于A,B兩點,點Q是點P關于原點的對稱點.
(I)設點P分有向線段
AB
所成的比為λ,證明:
QP
⊥(
QA
QB
)

(Ⅱ)設直線AB的方程是x-2y+12=0,過A,B兩點的圓C與拋物線在點A處有共同的切線,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,過拋物線x2=4y的對稱軸上任一點P(0,m)(m>0)作直線與拋物線交于A(x1,y1),B(x2,y2)兩點.
(I)若
AP
PB
(λ∈R)
,證明:λ=-
x1
x2
;
(II)在(I)條件下,若點Q是點P關于原點對稱點,證明:
QP
⊥(
QA
QB
)
;
(III)設直線AB的方程是x-2y+12=0,過A,B兩點的圓C與拋物線在點A處有共同的切線,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,過拋物線x2=4y焦點的直線依次交拋物線與圓x2+(y-1)2=1于點A、B、C、D,則
AB
CD
的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•紹興模擬)如圖,過拋物線x2=4y焦點F的直線l與拋物線交于A,B兩點(A在第一象限),點C(0,t)(t>1).
(I)若△CBF,△CFA,△CBA的面積成等差數(shù)列,求直線l的方程;
(II)若|AB|∈(
9
2
64
7
)
,且∠FAC為銳角,試求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2004年湖南省高考數(shù)學試卷(文科)(解析版) 題型:解答題

如圖,過拋物線x2=4y的對稱軸上任一點P(0,m)(m>0)作直線與拋物線交于A,B兩點,點Q是點P關于原點的對稱點.
(I)設點P分有向線段所成的比為λ,證明:
(Ⅱ)設直線AB的方程是x-2y+12=0,過A,B兩點的圓C與拋物線在點A處有共同的切線,求圓C的方程.

查看答案和解析>>

同步練習冊答案