設(shè)橢圓為正整數(shù),為常數(shù).曲線在點(diǎn)處的切線方程為.
(Ⅰ)求函數(shù)的最大值;
(Ⅱ)證明:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分) 已知拋物線與直線相交于兩點(diǎn).
(1)求證:以為直徑的圓過坐標(biāo)系的原點(diǎn);(2)當(dāng)的面積等于時,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知長方形,,,以的中點(diǎn)為
原點(diǎn)建立如圖所示的平面直角坐標(biāo)系.
(1)求以A、B為焦點(diǎn),且過C、D兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓上任意一點(diǎn)為P,在x軸上有一個動點(diǎn)Q(t,0),其中,探究的最
小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線C:2x2-y2=2與點(diǎn)P(1,2).求過點(diǎn)P(1,2)的直線l的斜率k的取值范圍,使l與C只有一個交點(diǎn);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,并且直線是拋物線的一條切線。
(1)求橢圓的方程
(2)過點(diǎn)的動直線交橢圓于、兩點(diǎn),試問:在直角坐標(biāo)平面上是否存在一個定點(diǎn),使得以為直徑的圓恒過點(diǎn)?若存在求出的坐標(biāo);若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知一條曲線C在y軸右邊,C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y(tǒng)軸距離的差都是1
(1)求曲線C的方程.
(2)是否存在正數(shù)m,對于過點(diǎn)M(m,0)且與曲線C有兩個交點(diǎn)A,B的任一直線,都有?若存在,求出m的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過雙曲線的一個焦點(diǎn),并于雙曲線的實軸垂直,已知拋物線與雙曲線的交點(diǎn)為,求拋物線的方程和雙曲線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
橢圓的離心率,過右焦點(diǎn)的直線與橢圓相交
于A、B兩點(diǎn),當(dāng)直線的斜率為1時,坐標(biāo)原點(diǎn)到直線的距離為
⑴求橢圓C的方程;
⑵橢圓C上是否存在點(diǎn),使得當(dāng)直線繞點(diǎn)轉(zhuǎn)到某一位置時,有成
立?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo)及對應(yīng)的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)如圖,AB是過橢圓左焦點(diǎn)F的一弦,C是橢圓的右焦點(diǎn),已知|AB|=|AC|=4,∠BAC=90°,求橢圓方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com