如圖,網(wǎng)格紙上正方形小格的邊長為1(表示1cm),圖中粗線畫出的是某零件的三視圖,該零件由一個底面半徑為3cm,高為6cm的圓柱體毛坯切削得到,則切削掉部分的體積與原來毛坯體積的比值為( 。
A、
17
27
B、
5
9
C、
10
27
D、
1
3
考點:由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:由三視圖判斷幾何體的形狀,通過三視圖的數(shù)據(jù)求解幾何體的體積即可.
解答: 解:幾何體是由兩個圓柱組成,一個是底面半徑為3高為2,一個是底面半徑為2,高為4,
組合體體積是:32π•2+22π•4=34π.
底面半徑為3cm,高為6cm的圓柱體毛坯的體積為:32π×6=54π
切削掉部分的體積與原來毛坯體積的比值為:
54π-34π
54π
=
10
27

故選:C.
點評:本題考查三視圖與幾何體的關(guān)系,幾何體的體積的求法,考查空間想象能力以及計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知曲線C1的參數(shù)方程是
x=
t
y=
3t
3
(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程是ρ=2,則C1與C2交點的直角坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
3
sin
πx
m
,若存在f(x)的極值點x0滿足x02+[f(x0)]2<m2,則m的取值范圍是( 。
A、(-∞,-6)∪(6,+∞)
B、(-∞,-4)∪(4,+∞)
C、(-∞,-2)∪(2,+∞)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)全集為R,集合A={x|x2-9<0},B={x|-1<x≤5},則A∩(∁RB)=( 。
A、(-3,0)
B、(-3,-1)
C、(-3,-1]
D、(-3,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)k滿足0<k<5,則曲線
x2
16
-
y2
5-k
=1與
x2
16-k
-
y2
5
=1的( 。
A、實半軸長相等
B、虛半軸長相等
C、離心率相等
D、焦距相等

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若變量x,y滿足約束條件
x+2y≤8
0≤x≤4
0≤y≤3
,則z=2x+y的最大值等于( 。
A、7B、8C、10D、11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對任意等比數(shù)列{an},下列說法一定正確的是( 。
A、a1,a3,a9成等比數(shù)列
B、a2,a3,a6成等比數(shù)列
C、a2,a4,a8成等比數(shù)列
D、a3,a6,a9成等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若tanα>0,則(  )
A、sinα>0
B、cosα>0
C、sin2α>0
D、cos2α>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
ex
x2
-k(
2
x
+lnx)(k為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)).
(Ⅰ)當k≤0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在(0,2)內(nèi)存在兩個極值點,求k的取值范圍.

查看答案和解析>>

同步練習冊答案