分析:(1)通過對函數(shù)f(x)求導(dǎo),進而轉(zhuǎn)化為判斷二次函數(shù)y=x
2-2ax+2a的正負(fù)問題,再對a分類討論即可.
(2)當(dāng)
x>1,且x≠2時,>恒成立問題,轉(zhuǎn)化為當(dāng)x>1,且x≠2時
[f(x)-a]>0恒成立問題,只要利用(1)的結(jié)論對a及x進行分類討論f(x)-a及x-2的符號即可.
解答:解:(1)由題意可知函數(shù)f(x)的定義域為(1,+∞),
f′(x)=-=,
設(shè)g(x)=x
2-2ax+2a,△=4a
2-8a=4a(a-2),
①當(dāng)△≤0,即0≤a≤2,g(x)≥0,
∴f
′(x)≥0,f(x)在(1,+∞)上單調(diào)遞增.
②當(dāng)a<0時,g(x)的對稱軸為x=a,當(dāng)x>1時,由二次函數(shù)的單調(diào)性可知g(x)>g(1)>0,
∴f
′(x)>0,f(x)在(1,+∞)上單調(diào)遞增.
③當(dāng)a>2時,設(shè)x
1,x
2(x
1<x
2)是方程x
2-2ax+2a=0的兩個根,則
x1=a->1,x2=a+,
當(dāng)1<x<x
1或x>x
2時,f
′(x)>0,f(x)在(1,x
1),(x
2,+∞)上是增函數(shù).
當(dāng)x
1<x<x
2時,f
′(x)<0,f(x)在(x
1,x
2)上是減函數(shù).
綜上可知:當(dāng)a≤2時,f(x)在(1,+∞)上單調(diào)遞增;
當(dāng)a>2時,f(x)的單調(diào)增區(qū)間為(1,x
2),(x
2,+∞),單調(diào)遞減區(qū)間為(x
1,x
2).
(2)
>可化為[ln(x-1)+-a]>0,即
[f(x)-a]>0,(*)
令h(x)=f(x)-a,由(1)知:
①當(dāng)a≤2時,f(x)在(1,+∞)上是增函數(shù),所以h(x)在(1,+∞)是增函數(shù).
因為當(dāng)1<x<2時,h(x)<h(2)=0,∴(*)式成立;
當(dāng)x>2時,h(x)>h(2)=0,∴(*)成立;
所以當(dāng)a≤2時,(*)成立
②當(dāng)a>2時,因為f(x)在(x
1,2)上是減函數(shù),所以h(x)在(x
1,2)上是減函數(shù),所以當(dāng)x
1<x<2時,h(x)>h(2)=0,(*)不成立.
綜上可知,a的取值范圍為(-∞,2].