11.函數(shù)y=$\sqrt{x-1}$+lg(2-x)的定義域是(  )
A.(-∞,1]∪(2,+∞)B.(1,2)C.[1,2)D.(-∞,2]

分析 由根式內(nèi)部的代數(shù)式大于等于0,對數(shù)式的真數(shù)大于0聯(lián)立不等式組求解.

解答 解:由$\left\{\begin{array}{l}{x-1≥0}\\{2-x>0}\end{array}\right.$,解得1≤x<2.
∴函數(shù)y=$\sqrt{x-1}$+lg(2-x)的定義域是[1,2).
故選:C.

點評 本題考查函數(shù)的定義域及其求法,是基礎的計算題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=sinx+cosx,x∈R
(Ⅰ)求f(x)的最小正周期;
(Ⅱ) 若f(α)=$\frac{3}{4}$,求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)$f(x)=ax-\frac{1}{x}-(a+1)lnx,a∈R$.
(I)求函數(shù)f(x)在$x=\frac{1}{2}$處的切線方程為4x-y+m=0時,此時函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若$a>\frac{1}{e}$,判斷函數(shù)g(x)=x[f(x)+a+1]的零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知A={x||x+2|≥5},B={x||3-x|<2},則A∪B=( 。
A.RB.{x|x≤-7或x≥3}C.{x|x≤-7或x>1}D.{x|-7≤x<1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若正數(shù)x,y滿足x+2y+4=4xy,且不等式(x+2y)a2+2a+2xy-34≥0恒成立,則實數(shù)a的取值范圍是( 。
A.(-∞,-$\frac{3}{2}$]∪[$\frac{3}{2}$,+∞)B.(-∞,-3]∪[$\frac{3}{2}$,+∞)C.(-∞,-3]∪[$\frac{5}{2}$,+∞)D.(-∞,-$\frac{3}{2}$]∪[$\frac{5}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若集合$A=\left\{{x\left|{\frac{1}{10}<\frac{1}{x}<\frac{3}{10}\;,\;\;x∈{N}}\right.}\right\}$,集合B={x||x|≤5,x∈Z},則集合A∪B中的元素個數(shù)為(  )
A.11B.13C.15D.17

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.下列四組函數(shù)中,表示相等函數(shù)的一組是( 。
A.f(x)=$\sqrt{{x}^{2}}$與g(x)=($\sqrt{x}$)2B.f(x)=|x|與g(x)=$\sqrt{{x}^{2}}$
C.g(x)=$\frac{{x}^{2}-1}{x-1}$與g(x)=x+1D.f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$與g(x)=$\sqrt{{x}^{2}-1}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,在四棱柱ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是正方形,且AB=1,D1D=$\sqrt{2}$
(1)求證:AC⊥平面BB1D1D
(2)求四棱錐D1-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.正整數(shù)數(shù)列{an}滿足$\frac{S_n}{a_n}=pn+q({p,q為常數(shù)})$,其中Sn為數(shù)列{an}的前n項和.
(1)若p=1,q=0,求證:{an}是等差數(shù)列
(2)若數(shù)列{an}為等差數(shù)列,求p的值.
(3)證明:a2016=2016a1的充要條件是p=$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案