(2014·成都模擬)如圖,正方形ABCD的邊長為1,延長BA至E,使AE=1,連接EC,ED,則sin∠CED=(  )

A. B. C. D.

 

B

【解析】因為四邊形ABCD是正方形,且AE=AD=1,

所以∠AED=.在Rt△EBC中,EB=2,BC=1,

所以sin∠BEC=,cos∠BEC=.

sin∠CED=sin

=cos∠BEC-sin∠BEC==.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第五章 數(shù)列(解析版) 題型:解答題

已知數(shù)列{an}滿足an+1=(n∈N*),且a1=.

(1)求證:數(shù)列是等差數(shù)列,并求an.

(2)令bn=(n∈N*),求數(shù)列{bn}的前n項和Tn.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第九章計數(shù)原理與概率隨機變量及其分布(解析版) 題型:解答題

某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

1月

10日

2月

10日

3月

10日

4月

10日

5月

10日

6月

10日

晝夜溫差

x(℃)

10

11

13

12

8

6

就診人數(shù)

y(個)

22

25

29

26

16

12

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率.

(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=x+.

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

(參考公式:==,=-).

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:解答題

(2014·孝感模擬)已知函數(shù)f(x)=sinωxcosωx-cos2ωx,其中ω為使f(x)能在x=時取得最大值的最小正整數(shù).

(1)求ω的值.

(2)設(shè)△ABC的三邊長a,b,c滿足b2=ac,且邊b所對的角θ的取值集合為M,當x∈M時,求f(x)的值域.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:選擇題

(2014·宜昌模擬)在△ABC中,若=,則B的值為(  )

A.30° B.45° C.60° D.90°

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第七章 立體幾何(解析版) 題型:解答題

(2014·海淀模擬)如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1,且E是BC中點.

(1)求證:A1B∥平面AEC1.

(2)求證:B1C⊥平面AEC1.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第七章 立體幾何(解析版) 題型:選擇題

用與球心距離為1的平面去截球,所得的截面面積為π,則球的體積為( )

A. B. C.8π D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 解析幾何(解析版) 題型:選擇題

已知集合A={1,a},B={1,2,3},則“a=3”是“A⊆B”的(  )

A.充分而不必要條件 B.必要而不充分條件

C.充分必要條件 D.既不充分也不必要條件

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:填空題

(2014·長沙模擬)計算:=____________.

 

查看答案和解析>>

同步練習冊答案