已知數(shù)列的前項(xiàng)和,數(shù)列滿足
(1)求
(2)求證數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(3)設(shè),數(shù)列的前項(xiàng)和為,求滿足的最大值.

(1);(2)證明詳見解析,;(3)的最大值為

解析試題分析:(1)根據(jù)條件中,可令,結(jié)合,即可得:;(2)欲證是等差數(shù)列,而條件中,因此可以首先根據(jù)數(shù)列滿足的條件探究滿足的關(guān)系,進(jìn)而可以得到數(shù)列滿足的關(guān)系:當(dāng)時(shí),
,即,∴,
又∵ ,∴,而,∴是以為首項(xiàng),為公差的等差數(shù)列,;
(3)由(2)結(jié)合條件,可得,因此可以考慮采用裂項(xiàng)相消法求數(shù)列的前項(xiàng)和,從而可將轉(zhuǎn)化為關(guān)于的不等式:,結(jié)合,即可知的最大值為
試題解析:(1)∵,∴令n=1,;
(2)證明:在中,當(dāng)時(shí),
,即,∴,
又∵ ,∴,而,∴是以為首項(xiàng),為公差的等差數(shù)列,
,∴;
(3)由(2)及 ,∴cn=log2=log22n=n,
,∴ ,

又∵,∴的最大值為
考點(diǎn):1.等差數(shù)列的證明;2.求數(shù)列的通項(xiàng)公式;3.裂項(xiàng)相消法求數(shù)列的和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知等差數(shù)列的前三項(xiàng)為,則此數(shù)列的通項(xiàng)公式為______  .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{an}中,a1=1,a3=-3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}的前k項(xiàng)和Sk=-35,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足:,的前項(xiàng)和為
(1)求;
(2)令(其中為常數(shù),且),求證數(shù)列為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的前項(xiàng)和為,,
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前100項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,對(duì)一切,點(diǎn)都在函數(shù)的圖象上
(1)求歸納數(shù)列的通項(xiàng)公式(不必證明);
(2)將數(shù)列依次按1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng)循環(huán)地分為(),,;,,;,…..,
分別計(jì)算各個(gè)括號(hào)內(nèi)各數(shù)之和,設(shè)由這些和按原來括號(hào)的前后順序構(gòu)成的數(shù)列為,
的值;
(3)設(shè)為數(shù)列的前項(xiàng)積,若不等式對(duì)一切都成立,其中,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,的等差中項(xiàng)().
(1)求數(shù)列的通項(xiàng)公式;
(2)是否存在正整數(shù),使不等式恒成立,若存在,求出
的最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知數(shù)列的前項(xiàng)和為,,,其中為常數(shù),
(I)證明:;
(II)是否存在,使得為等差數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前項(xiàng)和記為,,
(1)求證是等比數(shù)列,并求的通項(xiàng)公式;
(2)等差數(shù)列的各項(xiàng)為正,其前項(xiàng)和為,且,又 成等比數(shù)列,求

查看答案和解析>>

同步練習(xí)冊(cè)答案